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The UAE is a pioneer in the region 

and the world in addressing climate 

change, as it is making great efforts to reduce 

gas emissions and switch to clean energy. The 

UAE has a large number of environmental-

ly friendly projects, initiatives, and ambitious 

plans to increase the total use of renewable 

energy, by 2050. It also has a national green 

economy transformation plan, which aims to 

become a global center for green technology 

and sustainable economy. This includes in-

vestment in peaceful nuclear technologies for 

electricity generation, research on solar ener-

gy, and other clean energy sources. In addition 

to investing in scientific research to find inno-

vative solutions that contribute to promoting 

smart agriculture and reducing the repercus-

sions of climate change, environmental reha-

bilitation, and preserving biological diversity, 

and which includes programs to protect endan-

gered species and rehabilitate natural areas.

In general, the UAE continues to strive towards 
sustainability and limiting climate change, through 
multiple and comprehensive strategies. However, cli-
mate change has been one of the main issues faced 
by the, as the country is working hard to achieve its 
ambitious goals. This interest was proofed through  
the UAE’s Vision, 2021, which affirmed the UAE's com-
mitment to be part of the global journey, and to par-
ticipate in the development and implementation of 
innovative solutions to protect the environment and 
ensure its sustainability. The vision also affirmed the 
UAE's commitment to mitigating the impact of cli-
mate change in order to protect our environment for 

future generations. We preserve our rich natural from 
dangers resulting from human activities globally and 
locally, through preventive measures such as reducing 
carbon emissions, and regulatory measures that pro-
tects environmental systems. 

For its side, the United Nations confirmed sev-
eral times, that the UAE is a global and effective partner 
in facing climate challenges, as hosting the Climate 
Change Conference (COP28), represents an oppor-
tunity to enhance international cooperation to find a 
balanced solution that guarantees the continious eco-
nomic growth of countries, while taking into account 
the protection and development of the environment, 
for future generations. Where it represents the strate-
gic initiative to achieve climate neutrality, launched by 
H.H. Sheikh Mohamed bin Zayed Al Nahyan, President 
of the UAE, “May God protect him”, in October 2021, 
a national engine, aimed at reducing emissions and 
climate neutrality, by the year 2050, This makes the 
UAE the first country in the Near East and North Africa 
(NENA) region, to announce its goal of achieving cli-
mate neutrality. This announcement comes as a mile-
stone in the country's five-decade journey, in climate 
action and strategic vision for the next three decades. 

Hence,  the arising of the Award's initiative to 
measure the date palm tree carbon print, in line with 
the UAE initiative for climate neutrality, 2050. This 
works in providing new opportunities for workers in the 
agricultural sector in general, and the date palm cul-
tivation and production sector in particular, to reduce 
greenhouse gas emissions, carbon print of this sector, 
and achieve sustainable development. This initiative 
also contributes to establishing the position of the date 
palm tree, as an essential element for absorbing CO2 
and mitigating the consequences of climate change.
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The agricultural sector in general has 

a crucial role in reducing the effect 

of global warming, by absorbing greenhouse 

gases, the most important of which is Carbon 

Dioxide (CO
2
) from the atmosphere, as plants 

and trees absorb CO
2
 during photosynthesis. 

Where sunlight is converted into chemical en-

ergy. The carbon dioxide and water are then 

used to produce sugar and oxygen. Therefore, 

the larger the agricultural area, the more CO
2
 

that can be absorbed from the atmosphere.

Furthermore, sustainable farming systems can 
improve soil health and enhance biodiversity, where 
this can contribute to storing carbon, reducing emis-
sions, and enhancing resilience to climate change. 
Soil is one of the largest stores of carbon on the plan-
et, as it contains about three times the amount of car-
bon in the atmosphere. Sustainable agriculture and 
other soil health measures, such as field rotation and 
organic farming, can also preserve the amount of car-
bon stored in the soil. Agroforestry, which combines 
agriculture and forestry, can also play an important role 
in storing carbon. Trees in general, including the date 
palm tree (Phoenix dactylifera L.), store a significant 
amount of carbon, and provide several other benefits, 
including improving soil quality, as well as providing 
shade to other crops.

It should be noted that the main challenge to 
make the most of agriculture as a carbon absorber, is 
to balance carbon storage with the nutritional needs 
of humans. As we are obliged to plant trees and crops 
to sustain our livelihood, but how we do it, determines 
how much CO2 the agricultural system can absorb.

The use of farming methods that are harmoni-
ous or that take advantage of nature, such as organic 
farming, communal farming (growing multiple types of 
crops in the same field) and forestry, can help promote 
soil health, biodiversity, and carbon Long-term stor-
age, and which includes applying techniques such as 
biological carbon neutralization and soil carbon neu-
tralization, and which in return increases the amount 
of carbon that can be stored in the soil over the long 
term.

Making the most of agriculture as a carbon ab-
sorbent, requires balance between sustainable prac-
tices and nutritional needs. Hence the importance of 
the date palm tree, as it is one of the most important 
trees in its ability to absorb CO2 from the atmosphere, 
and store it within its dry mass. Since the capture of 
CO2 by a single tree depends on the size and area of 
its green parts. The date palm tree is characterized by 
the large size and density of its fronds, and therefore 
the volume of carbon stored by the date palm tree is 
considered huge. Highlighting the fact that the Near 
East and North Africa (NENA) region, includes more 
than one hundred million date palm trees, and which 
reflects the importance of the Award's interest in 
measuring the date palm trees’ carbon print, accord-
ing to a documented scientific method, because of its 
strategic importance in mitigating the effects of cli-
mate change.
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Summary



The United Arab Emirates (UAE) has un-
dertaken huge efforts to green the de-

sert and afforestation projects (planted mainly with 
date palms) hence, reducing its carbon footprint, 
which have never been accounted for, because of 
lack of implemented mechanisms and tools to as-
sess the amount of biomass and carbon stock (CS) 
sequestered by plants in the country. The purpose 
of this book is to implement a new approach to-
wards assessing the carbon sequestered by date 
palm (Phoenix dactylifera L.) trees, in both their bi-
omass compartment as well as the soils under be-
neath, using geospatial technologies (RS and GIS) 
assessed by field measurements. The methodology 
proposed in this book relied on both field and lab 
work, besides the intensive use of geospatial tech-
nology including, digital image processing of mul-
ti-scale, multi-resolution satellite imagery as well as 
Geographical Information Systems (GIS) modelling.

The current study was the development of new and 
unprecedented allometric equations for date palm trees in 
arid land. Such equations allow the development and cali-
bration of a RS-based model for estimating biomass and 
CS of date palms with high accuracy. Results showed that 
the crown area (CA) best estimated both crown biomass 
(CB) and soil organic carbon (SOC). Likewise, the trunk 
height (Ht) was the best estimator of trunk biomass (TB). 
Using these variables, allometric equations were devel-
oped for date palms at different age stages and were used 
to estimate CB, TB and SOC with coefficients of determi-
nation (R2) of: 0.884, 0.835 and 0.952, respectively. Further-
more, the average ratios of below ground biomass (BGB) 
to above ground biomass (AGB) varied with palm maturity 
stages averaging 0.332, 0.925 and 0.496 for young, me-
dium and mature date palms, respectively. Moreover, the 
present study demonstrated that the amounts of organic 
carbon stored in date palm trees were considerable with 
values of: 15.88 kg/palm for young, 96.62 kg/palm for me-
dium, and 225.58 kg/palm for mature palm trees. Substan-
tially higher amounts of SOC were measured compared to 
other local plants with values of: 18.092 kg/palm, 62.594 
kg/palm, and 92.908 kg/palm under young, medium and 
mature palm trees, respectively.

For detecting and mapping the date palm trees, 
the research proposes a framework based on using mul-

ti-source/ multi-sensor data in a hierarchical integrated 
approach (HIA) to map date palm trees at different age 
stages: young, medium, and mature. The outcomes of 
the implemented approach were the creation of detailed 
and accurate maps of DP at three age stages. The over-
all accuracies of date palm maps were 86.8%, 88%, and 
90.7% for young, medium, and mature date palm, re-
spectively. The area of each category was calculated and 
found to be 4,193.86 ha, 1,672.14 ha, and 1,722.05 ha, for 
mature, medium, and young date palm trees, respective-
ly. The overall accuracies for mixed-ages date palm the 
value reached up to 94.5%, with an overall Kappa statis-
tic estimated at 0.888 with a total area of date palm equal 
to 7,588.04 ha and the total number of date palm planted 
in the study area (Abu Dhabi Emirate) counted an estimat-
ed number of 8,966,826 palm trees.

The study showed that the correlation of mature 
date palm class alone (>10 years) with single bands was 
significant with shortwave infrared 1 (SWIR1) and short-
wave infrared 2 (SWIR2), while the correlation was sig-
nificant with all tested vegetation indices (VI), except for 
tasseled cap transformation index for brightness (TCB) 
and for greenness (TCG). By using different types of re-
gression equations, tasseled cap transformation index 
for wetness (TCW) showed the strongest correlation us-
ing a second-order polynomial equation to estimate the 
biomass of mature date palm with R² equal to 0.7643 and 
P value equal to 0.007. The exponential regression equa-
tion that uses renormalized difference vegetation index 
(RDVI) as RS predictor was the best single VI and had the 
strongest correlation among all RS variables of Landsat 8 
OLI for AGB of non-mature DP, with an R2 value of 0.4987 
and P value equal 0.00002. The total in date palm trees 
was estimated as the sum of the estimated CS in the five 
components: aboveground biomass, belowground bio-
mass, litter, debris, and soil organic carbon. The overall 
CS by date palm trees in Abu Dhabi Emirate predicted 
from this map amounted to 2,447,856.87 tons. 

The findings of the research work are promising 
and can be used to estimate the amount of biomass and 
carbon stock in DP trees in the country as well as in arid 
land in general. Therefore, it can be applied to enhance 
the decision-making process on sustainable monitoring 
and management of carbon sequestration by date palms 
in other similar ecosystems. The research’s approach 
has never been developed elsewhere for date palms in 
arid areas. 

Summary

Keywords: Date Palm, Phoenix dactylifera L., Carbon Sequestration, Arid Lands, 
Remote Sensing, Biomass, UAE.
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Date palm is a crop that plays a 
central role in the agricultural sys-

tems across the world. The reason is its high 
nutritional value, resilience, and suitability to 
the arid and semi-arid areas that represent 
90% of the Arab world. It is characterized by 
its tolerance to various environmental stress-
es (drought, low or high temperatures and sa-
linity), but this may be reflected in flowering 
and fruiting. A single date palm can produce 
70-100kg of good dates and 45kg of by-prod-
ucts (pruning residues, slippers, harvesting 
and fallen fruits). Dates are considered a nutri-
tional prize that is easy to store, transport and 
handle, and one that is available throughout 
the year. It is consumed fresh in three main 
stages of maturity (Al-Khalal/Al-Bisr for some 
Cultivars, the Rutab stage, and Tammar), 
and used in many value-added industries.

Date palm cultivation and production sector has 
become a subject of concern and care because of its 
agricultural, economical and nutritional unique value 
across the world. Global date production is estimated 
about 8 million tons, of which Arab countries produc-
tion constitutes more than 75%, distributed mostly in 
Asia and North Africa. In addition to several other re-
gions such as Australia, America, Namibia and South 
Africa. The MENA region countries have been taking 
accelerated steps towards the development of this 
sector, whether in terms of investing in modern date 
palm cultivation, manufacture and marketing of dates.

On the other hand, the date palm and dates res-
idues in most of the date producing countries, is of a 
great burden on date growers and dates processing 
factories, and which could reach average of 23 Kg of 
waste per tree annually. This resulted in accelerated 
steps and a remarkable shift towards adopting the 
Bio-Circular economy model, as a system that aims 
to reduce waste and make the most out of resourc-
es by reducing waste and emissions to the maximum 
extent. This in return brought to light several products 
that are trending in regional and international markets. 

As the global demand for date palm fruit grows 
at 6%, countries of the region should focus on maxi-
mizing value and minimizing waste. The economy of a 
country will grow if the resources are used efficiently 
and sustainably. We have witnessed this in the expan-
sion of the product range from the fruit and its deriva-
tives to include all parts of the tree including to derive 
drinks, bars, bio fuel, seed oil and furniture. Latest bi-
otechnological advancements have found use for the 
fruit and its byproducts to induce microbial growth for 
fermentation to be sold as bioactive compounds.

For centuries, the date palm has served as a 
source of nutrition, innumerous craftsmanship and 
folklore which build over millennia formed some 
learned unique traditions, cultural practices, customs 
and festivities. This acquired knowledge united and 
strengthened the connection between people from all 
across the Arab region, with date palm representing a 

1.1.            
World Date 
Production, 
With a Special 
Emphasis on 
the UAE
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symbolism of shared challenges faced in the desert 
environment. Till date, the life skills acquired from the 
date palm is in one form or another preserved, where 
technology allowed the expansion of its uses.

The human skills factor is considered as an im-
portant element in preserving the date palm cultural 
heritage. The region faces the risk of youngsters prefer-
ring more white-collar vocations to traditional palm date 
cottage industries. Regional Governments and authori-
ties need to work on understanding and adopting glob-
al market trends and facilitate technology, product de-
sign for innovation, marketing and building value chain 
linkages. Where a regional platform should be created 
for product innovation, creative solutions between the 
date growers, stakeholders, designers, artisans, organ-
izations, entrepreneurs, and business community to 
remain connected to the latest innovations in the date 
palm industry and encourage the use of modern tech-
nologies in all fields and explore new niche markets.

As one of the world’s largest producers of dates, 
with millions of trees, the United Arab Emirates recog-
nizes the importance of preserving date-palm pro-
duction systems and the rich traditions surrounding 
the fruit. Date palm production contributes immensely 
to economic revenue in the country through export, 
which supports the government’s goal of utilizing oth-
er available resources to diversify away from oil. The 
date palm’s wide range of uses for nutrition and raw 
materials also makes it important for food security in 
the region. Additionally, being a labor-intensive indus-
try, date palm production contributes to job creation 
and income generation for farmers.

The UAE extends special care and importance 
to the date palm tree, which is considered a national 
wealth of great economic, environmental, nutritional 
and social value. From an economic point of view, the 
country has been able to be among the top ten date 
producing countries. Date palm trees also constitute 
as a source of income for many workers in this sector, 
whether producers or marketers, as well as owners of 
related industries.

From an environmental perspective, the date 
tree is distinguished by its ability to live in the desert 
environment, forming an ecological habitat for many 
organisms, such as soil organisms to birds and sever-
al other, which contribute to creating a kind of ecolog-
ical balance. From a social aspect, the date palm tree 
constitutes a social heritage, in all segments of the 
society, as it is involved in many traditional and com-
mercial industries.

The interest in the date palm tree in the UAE, 
is linked to the beginning of the UAE’s establishment 
in the early seventies, where many national projects 
were implemented to increase the cultivated areas 
and adopt modern farming techniques such as irriga-
tion, fertilization, pest control and others.

23A case study from the Emirate of Abu Dhabi, UAE.



1.2. 

Overview

In 1990, the United Arab Emirates 

(UAE) was ranked at the 5th place 

as one of the top, per capita, CO
2
 emitting 

countries (EU EDGAR, 2021). It has remained 

amongst the top, per capita, CO
2
 emitting 

countries during the period 1990 – 2021 (last 

published statistics), when it was ranked the 

7th at 19.58 tons per capita CO
2
 emission in 

2021 (EU EDGAR, 2021). Furthermore, the UAE 

became one of the first major oil-producing 

countries to ratify the Kyoto Protocol when 

it entered into force in 2005. In contrast, the 

country has undertaken huge efforts to green 

the desert hence, reducing its carbon footprint, 

which have never been accounted for, because 

of lack of implemented mechanisms and tools 

to assess the amount of biomass and carbon 

stock sequestered by plants in the country. 

There is a common consent that afforestation 
and land-use conversion to a forest (reforestation) can 
be used to earn carbon credits and reduce the carbon 
footprint. This attitude has a growing interest among 
policymakers and governments (Baral & Guha, 2004). 
Estimation of carbon stock (CS) in forests and trees is 
important to assess their mitigation effects and hence 
balancing the carbon footprint  (Ebuy et al., 2011). Many 
techniques exist to estimate sequestered carbon 
(Gibbs et al., 2007). Most existing techniques ultimate-
ly rely on the ground measurement of plant biomass 

which is time-consuming, tedious, and destructive 
(Ebuy et al., 2011). Alternatively, most of the existing 
non-destructive methods using developed biomass 
estimation equations have been developed for tropical 
rainforests ecosystems because of their importance 
to the global carbon cycle (Basuki et al., 2009; Brown, 
1997; Chave et al., 2005; Cole & Ewel, 2006; Makinde 
et al., 2017). 

Unfortunately, very few plant species biomass 
estimation equations are available for desert eco-
systems. Moreover, none of these equations were 
developed and used to fit one of the most important 
fruit crops in these arid regions, Phoenix dactylifera L. 
(Date Palm). Indeed, the only indigenous wild desert 
plant domesticated in its native harsh environments 
appears to be the date palm (Zohary & Hopf, 2000). 
Date palm is considered a renewable natural resource 
because it can be replaced in a relatively short period 
of time or used through conservation efforts without 
depletion (El-Juhany, 2010). Date palm has a vital com-
ponent of the agricultural system. 

The records show that the number of DP in the 
Near East and North Africa (NENA) region exceeds 100 
million, distributed across 30 different countries (FA-
OSTAT, 2013). They produce about 7.5 million tons of 
dates annually. Particularly, UAE has a minimum of 200 
cultivars, 68 of which are commercially considered to 
be the most important (El-Juhany, 2010). Consequent-
ly, date palm, with its various cultivars, possesses the 
potential capacity to store carbon and hence be con-
sidered as a good means of carbon sequestration in 
such an arid ecosystem.

Nevertheless, the estimation of forest biomass 
raises scientific challenges to identify feasible ap-
proaches to assess carbon at the national-level (Gibbs 
et al., 2007). Effective management requires repetitive 
monitoring and accurate measuring of biomass which 
is a classical subject in plant population ecology (Joshi 
& Ghose, 2014; Avery & Burkhart, 2015; Elzinga et al., 
1998; Husch et al., 1982; Schreuder et al., 1993; Shiv-
er & Borders, 1996). Traditional biomass assessment 
methods (both destructive and allometric), based on 
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Infographic 1: Afforestation and land-use conversion to a forest (reforestation) can be used to earn 
carbon credits and balance carbon emissions.
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field measurements are the most accurate methods; 
however, they are difficult to conduct over large areas 
besides, they are not a practical approach for broad-
scale assessments (Kumar & Mutanga, 2017; Yuen et 
al., 2016). These difficulties make monitoring activities 
more costly, time-consuming, and labour-intensive 
(Attarchi & Gloaguen, 2014; Khalid & Hamid, 2017). Fur-
thermore, field-based resource inventories, are carried 
out for economic reasons and not environmental ones. 
They provide good historical data on patterns and 
trends but are not accurate enough to estimate fluxes 
for the entire landscape and all carbon pools therein 
(Cihlar et al., 2002). 

Recently, remote sensing (RS) procedures have 
been applied to natural resources management and 
biomass assessment (Kankare et al., 2013; Maynard et 
al., 2007; Salem Issa et al., 2019; Wannasiri et al., 2013). 
RS can obtain forest information over large areas with 
repetitive coverages, at a reasonable cost and with ac-
ceptable accuracy (Lu, 2006). Moreover, the integra-
tion of RS data into geographic information systems 
(GIS) models will benefit from the tools of both tech-
nologies; allowing for adding ancillary and field data 
to the analysis and increasing reliability in estimating 
the biomass, hence CS. Building GIS-based models 
to predict future scenarios for forest management and 
the implementation of afforestation plans is another 
more valuable product. 

The purpose of this book is to implement a new 
approach towards assessing the carbon sequestered 
by date palm trees in Abu Dhabi Emirate, in both their 
biomass compartment as well as the soils under be-
neath, using geospatial technologies (RS and GIS) as-
sessed by field measurements. Therefore, the main 
questions of the book are the following: 

• Are geospatial technologies (RS and GIS), as an 
innovative method, capable of estimating biomass 
and CS in forests (date palm trees in the current 
case) with minimum cost and time while keeping 
high levels of accuracies? 

• How can the geospatial technologies be con-

sidered as a reliable and feasible solution towards 

forest management in the arid regions and hence 

be adopted as a long-term strategy that can be in-

tegrated into the decision-making process at the 

national level? 

• On the other hand, the UAE country’s huge ef-

forts undertaken to green the desert and hence, 

reduce its carbon footprint, have not been account-

ed for, because of the lack of implemented mecha-

nisms and tools to assess the amount of biomass 

and CS sequestered by plants within its territories.

• Thus, Estimating CS in forests and trees by us-

ing a simple, practical, and an eco-friendly mecha-

nism is an accompanying objective to assess deci-

sion makers and planners in their efforts for climate 

change mitigation and hence balancing the carbon 

footprint.

Several specific objectives of the current study 

have been defined and specified, with the correspond-

ing chapter in which they are treated, as follows:

To calculate the biomass ratios in date palm 

including aboveground biomass (AGB), belowground 

biomass (BGB), total biomass, and the carbon per-

centage in both biomass and soil (SOC) at three age 

stages (young, medium, and mature) from selected 

date palm trees in Abu Dhabi Emirate. (Chapter 2), 

To develop date palm biomass allometric equa-

tions for estimating its biomass and CS assessment. 

(Chapter 2),

To map the main LULC classes in the study area 

and to extract and map the date palm trees in Abu 

Dhabi Emirate. (Chapter 3),

To build a RS-based spatial model for biomass 

and CS assessment of date palm. (Chapter 4), and

To quantify and visualize the amount of biomass 

and CS in Abu Dhabi Emirate, using the built RS-based 

spatial model. (Chapter 4).
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Infographic 2: Efforts to reduce its carbon footprint have not been accounted for due to a lack of tools to assess 
biomass and carbon sequestration in its territories.

Infographic 3: Geospatial techniques enhance natural resource management, particularly in 
biomass and carbon assessment, yielding positive results.
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1.3.

Literature 
Review

The substantive part of this Subsec-

tion has been published in peer re-

viewed journals. These published papers are:

• Dahy, B., Issa, S., Ksiksi, T., & Saleous, N. (2020). 
Geospatial Technology Methods for Carbon Stock 
Assessment: A Comprehensive Review. IOP Con-
ference Series: Earth and Environmental Science, 
Volume 540.

• Issa, S., Dahy, B., Ksiksi, T., & Saleous, N. (2020). 
A Review of Terrestrial Carbon Assessment Meth-
ods Using Geo-Spatial Technologies with Empha-
sis on Arid Lands. Remote Sensing, 12(12), 2008. 

• Dahy, B., Issa, S., Ksiksi, T., & Saleous, N. (2019). 
Non-Conventional Methods as a New Alternative 
for the Estimation of Terrestrial Biomass and Car-
bon Sequestered: Mini Review. World Journal of Ag-
riculture and Soil Science. 

1.3.1. Quantifying Terrestrial Carbon 
Sequestration 

Carbon sequestration is the process of cap-
turing of CO2 gas in the atmosphere and its storing in 
liquid or solid state. This process is already occurring 
naturally through trees, the ocean, soil and live organic 
matter (Lackner, 2003). Any reservoirs or stores of car-
bon are called carbon pools. Specifically, CO2 storing 
occurs in three levels: in plants and soil (Terrestrial Se-

questration), underground (Geological Sequestration) 

and deep in oceans (Ocean Sequestration) (Figure 1). 

Terrestrial or biologic sequestration is the process of 

storing atmospheric CO2 as carbon in the stems, roots 

of plants and soil. The bulk of carbon sequestered ter-

restrially is stored in forest biomass.

Forests, as both carbon sources and sinks, can 

play a major role in combating global climate change 

(Dick OB, 2015; Ekoungoulou et al., 2014). Estimation of 

CS and assessing the role of forest ecosystems in re-

gional and global carbon cycles, is important for a better 

understanding of the impacts of land-cover changes on 

carbon fluxes, nutrient cycling and budgeting. Likewise, 

monitoring forest biomass, as a step in CS estimation, 

is not an environmental issue only; actually, more than 

190 countries are committed to take action to imple-

ment and support sustainable management of for-

ests and enhancement of forest CS according to Paris 

Agreement on Climate Change (United Nations, 2019). 

Carbon sequestration is becoming an essential 

component in the fight against global warming. Af-

forestation projects and land use conversion to forest 

(reforestation) can be used to earn carbon credits and 

reduce the carbon footprint, hence providing a long-

term reduction in greenhouse gases (GHGs) levels 

through carbon sequestration (Singh et al., 2018). This 

attitude has a growing interest among policymakers 

and governments (Baral & Guha, 2004). Plantation 

cropping as a land use system has the potential to 

contribute to CS, maintain soil biodiversity and improve 

soil fertility (Prayogo et al., 2018). It can add economic 

value by providing more job opportunities, better in-

come and food security, especially the smallholder 

systems in developing countries, and the timber ex-

ploitation (Khalid & Hamid, 2017; Singh et al., 2018). 

The UN program for the reduction in emissions 

from deforestation and forest degradation (REDD+), is 

an international initiative to help nations earn financial 

incentives if they implement climate policies and if they 

demonstrate CO2 emission reduction (Gibbs et al., 2007). 
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Precise CS estimation is a necessary step to 

define carbon emission mitigation strategies and 

programs at the local and regional level (Clerici et al., 
2016a). This kind of studies is necessary for a better 

understanding of the long-term behaviour and drivers 

of carbon sequestration under different global climate 

change scenarios (Corona-Núñez et al., 2018). The total 

CS in any terrestrial ecosystem is the sum of carbon 

in biomass and soil. A practical definition of forest bio-

mass is the total amount of aboveground living organ-

ic matter in trees expressed as oven-dry tons per unit 

area (Brown, 1997). The estimation of biomass is a chal-

lenging task, especially in the areas with both complex 

stands and varying environmental conditions as well 

as in low vegetation cover density areas, such as arid 

lands. Both types of ecosystems require the use of ac-
curate and consistent measurement methods.

Eggleston et al. (2006) has listed five terrestrial 
ecosystem carbon pools involving biomass: above-
ground biomass (AGB), below-ground biomass (BGB), 
litter, woody debris and soil organic matter. The total 
CS is estimated as the sum of two quantities repre-
senting the amounts of carbon in soil and in biomass. 
Therefore, two routes for achieving sequestered car-
bon estimation: First, estimating soil organic carbon 
(SOC) which is part of soil organic matter (SOM). Sec-
ond, estimating vegetation biomass which can be 
achieved by estimating the AGB and then deriving the 
remaining components; BGB, Litter and Debris, from 
the AGB as shown in (Table 1).

Table 1: Calculation methods of CS components in terrestrial ecosystems. 

Component Calculation Method Source

AGB Destructive OR Non-destructive Methods (Gibbs et al., 2007)

BGB 20% of Above-ground biomass (Cairns et al., 1997)

Litters
10–20% of Above-ground biomass (Houghton et al., 2009)

Debris

SOC Total combustion method (Walkley & Black, 1934)

As for SOM, it is most commonly estimated 
through soil sampling at various layers; SOC is then 
estimated using the total combustion method, as ex-
plained in (Walkley & Black, 1934). The content of SOC 
included in SOM may change depending on many fac-
tors (ecosystems, type of organic residues and land 
management, etc.). Many studies estimate SOC from 
SOM using the conventional factor of 1.724 (~ 58% of 
SOM). This figure is widely used and has appeared in 
many studies and published papers in the last century; 
while Brady and Weil (1999) concluded that this value 
(58% of SOM) probably applies only to highly stabilized 
humus. After his statistical analysis of 481 studies, 
Pribyl (2010) found that conventional factor varies from 
1.35 to 7.50 with a mean value of 2.20, concluding that 

any single-number conversion factor, universally ap-

plied, has the potential for serious error when used to 

estimate the carbon content of soils. However, recent 

studies have accepted a generic quick, simple and in-

expensive coefficient of 57% for measuring SOC as a 

percent of SOM (Ponce-Hernandez et al., 2004).

Of the above five pools, AGB is the most visible, 

dominant, dynamic and important pool of the terres-

trial ecosystem, constituting around 30% of the total 

terrestrial ecosystem carbon pool which, in turn, rep-

resents 70–90% of the total forest biomass (Cairns et 
al., 1997). AGB estimation has received considerable 

attention over the last few decades because of in-

creased awareness of climate warming and the role 
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Infographic 4: The estimation of aboveground biomass (AGB) holds significance as it represents 
the most visible, dominant, dynamic, and critical component of the terrestrial ecosystem.
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forest biomass plays in carbon sequestration and re-
lease of greenhouse gases due to deforestation (Ku-
mar et al., 2015). While SOM holds two to three times 
more carbon than the total biomass carbon pool on a 
global scale, much of the soil carbon is more protected 
and not easily oxidized (Davidson & Janssen, 2006).

 On the other hand, AGB contributes to atmos-
pheric carbon fluxes to a much greater extent due to 
fire, logging, land-use changes, etc., and so is of much 
greater interest. Therefore, it should be monitored and 
measured along the year, not only a one-time map-
ping; although the estimation of forest biomass is a 
scientific challenge as to identify efficient methods for 
its assessment at regional to national-levels (Gibbs 
et al., 2007). Moreover, estimates of AGB can also be 
used to predict root biomass (BGB), which is generally 
estimated at 20% of the AGB based on the predictive 
relationship applied by many studies (Table 1) (Cairns 
et al., 1997; Mokany et al., 2006; Ramankutty et al., 
2007). In addition, CS of dead wood or litter (e.g., felled 
or dead trees, dead or broken branches, leaves, etc.) in 
mature forests are generally assumed to be equivalent 
to 10 to 20% of the calculated AGB (Gibbs et al., 2007; 
Houghton et al., 2009).

Producing accurate maps for biomass estima-
tion distribution is a serious challenge which has to 
be addressed when calculating CS. As mentioned be-
fore, plant biomass can be measured or estimated by 
both direct (destructive) and indirect (non-destructive) 
methods. The direct method which is the most pre-
cise method for determining carbon biomass by de-
structively harvest all plants, partition each into various 
constituent components (e.g. stem, branches, leaves, 
flowers, fruits, roots) and subsequently determine the 
carbon content of the various components analytically 
or calculated as a fraction of measured biomass (indi-
rect) (Yuen et al., 2016). The destructive methods of bi-
omass estimation are limited to a small area due to the 
destructive nature, time, expense and labor involved 
and sometime illegal especially for trees. In addition, 
these methods ultimately rely on ground measure-
ment and can cause severe destruction to the forests 

as well as a risk of environmental deterioration (Khalid 
& Hamid, 2017; Maulana et al., 2016). The indirect 
methods include the estimation based on allometric 
equations (Subsection 1.2.2) or through non-conven-
tional methods using RS and GIS (Subsection 1.2.3).

1.3.2. Biomass Allometric Equations

There are many reasons that make develop-
ing biomass equations a very essential step towards 
guarantying an alternative to destructive methods. The 
main objective in developing allometric equations is to 
avoid destructing forests when estimating their bio-
mass, hence its CS, and provide a cost effective and 
environment-friendly option since it is done without 
harvesting (Brown et al., 1989). In general, allometric 
equation is a statistical model to estimate the biomass 
of the trees using their biometrical characteristics (e.g., 
height, diameter at breast height (DBH) or crown size), 
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which are non-destructive and simpler to measure 

(Picard et al., 2012). Therefore, non-destructive meth-

ods through allometric relationships are increasingly 

used. Such equations have also been proven to be 

fast, inexpensive, and more suitable for largescale 

estimation of forest CS (Koala et al., 2017). Allomet-

ric models are commonly used in forest inventories 

and ecological studies (Brown et al., 1989). The mod-

els relate biomass of an entire tree or individual tree 

components (e.g., stems, branches, leaves or roots) 

to one or more easily tree variables and dendrometric 

measures (e.g. height, diameter breast height or crown 

size), and to estimate CS (Ebuy et al., 2011; Picard et al., 
2012). The proportions between height and diameter, 

between crown height and diameter, and between bio-

mass and diameter follow rules that  are common to all 

trees which are grown under the same conditions and 

become more useful in uniform forests or trees with 

similarly aged stands (Archibald & Bond, 2003; Bohl-

man & O’Brien, 2006; Dietze et al., 2008; King, 1990; 

Kumar & Mutanga, 2017). 

The selection of appropriate and robust models, 
therefore, have considerable influence on the accura-
cy of the obtained estimates (Mahmood et al., 2019). As 
mentioned above the aim of using allometric equations 
is to estimate biomass without the need to cut trees. In 
order for those equations to be validated, cutting and 
weighting tree components is necessary (Vashum & 
Jayakumar, 2012). The number of trees destructively 
sampled to build allometric equations differs from one 
study to another. Currently, there is no consensus on 
that number, as this is often dependent on resource 
availability and permission to harvest trees (Yuen et 
al., 2016). For example, Russell (1983) and Deans et al. 
(1996) used 15 and 14 trees, while Brown et al. (1995) 
and Khalid et al. (1999a) used only 8 and 10 trees, 
respectively to build their allometric equations. 
In their study of oil palm trees of Benin forests, 
Aholoukpè et al. (2018) used 25 palms from 
several ages and different genetic origins to 
build a species specific allometric equation. 
However, a recent study showed that smaller 
sample size (≤10) results in biased allomet-
ric equations (Duncanson et al., 2015). 

Drylands

Subtropical

small portion conducted
on arid and semiarid regions

Studies on forest biomass and carbon
in different ecosystems

Tropical

Boreal

Infographic 5: The majority of biomass and carbon estimation studies have predominantly focused on boreal and tropical 
forests, while comparatively fewer have been undertaken in arid and semiarid regions.
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Generally, there is no specific procedure to 
build allometric equations yet there is a recommended 
guideline for documenting allometric equations. (Jara 
et al., 2015) recommended that researchers should 
only report all the details in methods section of how 
they build up their equations. Furthermore, sampled 
trees should be randomly selected, regardless of 
health condition or degree of damage, because sam-
pling only trees with fully intact structural characteris-
tics will likely result in an equation that overestimates 
biomass for the general case. In this respect, data out-
liers should not be removed simply to improve model 
fit metrics (Yuen et al., 2016). 

Many allometric equations have been devel-
oped for various plant species. For example, the Globe 
Allome Tree database contains over 706 equations 
from Europe, 2843 from North America and 1058 from 
Africa (Sileshi, 2014). Some of these are volume equa-
tions, while the others are biomass equations. The bi-
omass can be calculated from volume of the biomass 
per hectare (VOB/ha) by using a generalized volume 
model, wood density and a biomass expansion factor 
(Brown et al., 1995; Lugo & Brown, 1992). One of the lim-
itations of volume equations is that it can only be ap-
plied to stem while allometric equations cover a wide 
range of vegetation components (Cheng et al., 2014). 

Allometric models can be developed for ei-
ther individual or multiple plant species to represent 
a community or bioregion. They also can be devel-
oped to cover specific sites, regional or pan-tropical 
scales (Mahmood et al., 2019; Yuen et al., 2016). Most 
of biomass equations, species and multispecies, have 
been developed for tropical rainforests ecosystems 
because of their importance to the global carbon cycle 
(Basuki et al., 2009; Brown, 1997; Chave et al., 2005; 
Cole & Ewel, 2006; Makinde et al., 2017). The mul-
tispecies equations are built because it is practically 
difficult to develop allometric equations for all species 
present in the ecosystem (Dick OB, 2015). 

Chave et al. (2005) have shown that one hec-
tare of a tropical forest may shelter as many as 300 
different tree species. Hence, the multispecies allo-

metric models are more methodologically efficient for 
biomass estimation compared to those developed 
for individual species at specific locations. However, 
these models carry the potentiality to misrepresent 
local, species- or community-specific variations and 
anomalies. Therefore, they may fail to capture vari-
ations in both forest type and the full diversity of the 
natural vegetation communities hence leading to an 
increased level of uncertainty (Mahmood et al., 2019). 

Hence, a tailored equation for each specific 
species is needed for a better accuracy in estimating 
the biomass. Nevertheless, such an equation will still 
be conditioned by the ecological zone based on which 
it had been built.  Hence, weakening the estimation’s 
accuracy of the actual forest AGB when the equation is 
used in another area or region. 

Due to the different characteristics of plant 
species from site to site, pre-existing equations de-
veloped at locations that are different from the one in 
consideration may have limited applicability, even if 
the equation is species-specific. In their review of allo-
metric equations in Asia, Yuen et al. (2016) concluded 
that applying existing allometric equations out of con-
venience is potentially a key source of uncertainty in 
above- and below-ground CS estimates in many Asian 
landscapes.  The selection of allometric equations 
can influence local, regional and global biomass es-
timates, therefore, there is an importance of site-spe-
cific equations for accurate estimation of biomass as 
generalized equations can overestimate AGB by 50% 
to 65% (Maulana et al., 2016). 

The locally developed models are expected to 
provide less uncertainty than generic equations (Jara 
et al., 2015). Site and species specific allometric mod-
els should logically provide a greater level of accuracy 
at a given location to assist the assessment of bio-
mass carbon sequestration and that make the locally 
built equation a better option to produce more accu-
rate site-specific biomass estimation. 

Finally, since the choice of the equations is the 
first critical step, there has been a rapid increase in ef-
forts to develop locally appropriate equations (Sileshi, 
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2014). Only a few biomass assessment equations are 
available for plant species in desert land ecosystems. 
None of these measurements were used to fit one 
of the most important fruit crops in the arid regions, 
Phoenix dactylifera L., (date palm).

The mathematical model commonly used for 
modelling AGB is based on the power function (Yuen 
et al., 2016). This was founded on the basis that the 
growth of a plant is characterized by the relation of 
proportionality between its total biomass and its size 
(Fonton et al., 2017). Biometric variables measured in 
plant species were considered as independent varia-
bles (DBH, total height, crown variables, stem height, 
etc) and incorporated into a power function model (Da 
Silva et al., 2015). 

The allometry based on power model have good 
reliability as indicated by high coefficient of determina-
tion indices (R2) (Gevana & Im, 2016). Researchers in-
volved in the development and application of biomass 
allometric equations are faced with many challenges. 
One of them is the choice between simple bivariate 
power-law (typical allometric) functions and models 
with multiple predictors (Sileshi, 2014). Different vari-
ables (structural and non-structural) were considered 
when building biomass allometric equations. Most 
equations for AGB, or biomass of any component 
(stem, branch, leaves, other) use equations with di-
ameter and/or height as independent variables. Other 
variables such as girth, basal area and crown dimen-
sions have been used even less frequently— usually in 
special cases (Yuen et al., 2016). 

Using wood density, when it is available, as a 
predictor is considered as significantly improving the 
biomass prediction equation when dealing with mul-
tispecies dataset (Chave et al., 2005). In their study to 
investigate the allometric equations in China, Cheng 
et al. (2014) found that the most frequently used pre-
dictive variable in single-variable models is DBH, and 
in two-variable models are DBH and tree height while 
wood density and crown diameter are presented in 
more complicated models. They found that diameter 
variables have a dominant proportion of 87.4% of the 
surveyed equations. However, DBH showed a weak cor-

relation with biomass quantity in specific species, like 
palm for example (Carlos et al., 2015; Sajdak et al., 2014).

 Age can be used as a predictor for biomass es-
timation in many studies since there is a linear correla-
tion between biomass accumulation and age (Henson 
& Chang, 2003; Singh et al., 2018). Many studies have 
highlighted the importance of tree height as a predic-
tor variable in the AGB equation (Fonton et al., 2017; 
Khalid & Hamid, 2017; Picard et al., 2012; Prayogo et al., 
2018). A single plant species can have more than one 
allometric equation, e.g., date palm varieties (Appendix 
1). Furthermore, more than one allometric equation can 
be developed for each plant species. The reasons be-
hind that can be:

1. difference in ecoregion sites that these equations 
developed for (Tropical or Amazonian forests etc.), 

2. the decision of the developers of the allometric 
equations and choosing of the suitable variable/s 
(height, DBH, trunk height, etc.) to work as input (in-
dependent variable) to the model, and

3. the use of the allometric equations to cover 
either specific parts of the plant (AGB, crown bio-
mass, trunk biomass, etc.) or specific age (young, 
mature, mixed, etc.), and

4. the selection of the mathematical equation form 
(power, linear, algorithmic, etc.). 

The use of crown variables as indicators for bio-
mass estimation became of more interest lately due to 
the developments in RS technologies. More recently, 
allometric equations have been used, coupled with RS 
and field-based structural variables measurements 
(Cihlar et al., 2002; Dahy et al., 2019; Salem Issa et 
al., 2018, 2019). For example, Cheng et al. (2014) 
recommended to develop more equations with 
different field structural variables that can be 
linked to RS predictors. Likewise, Jucker et al. 
(2017) suggested in their review of allometric 
equations to develop a new generation of 
allometric equations that estimate biomass 
based on attributes which can be remotely 
sensed.
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1.3.3. Geospatial Technologies for 

Estimation of Carbon Stock

While direct field data measurements of bio-
mass are the most accurate, they are not adequate 
to map AGB distribution at large scales. On the other 
hand, geospatial technologies proved to be practical 
and cost-time effective, and allows for imaging and 
studying inaccessible places by traditional field meas-
urements. Geospatial technologies procedures have 
been applied to natural resources management and 
biomass assessment, hence CS (Kankare et al., 2013; 
Wannasiri et al., 2013). RS can obtain biomass infor-
mation over large areas with repetitive coverages, at 
a reasonable cost and with acceptable accuracy (Lu, 
2006). 

Various techniques and sensors have also been 
used and tested in numerous studies. RS, both active 
and passive, provide some of the most time-efficient 
and cost-effective approaches to derive AGB estima-
tion at the national and regional scale. Moreover, the 
integration of RS data into GIS models provides advan-
tages of both technologies, allowing for adding ancil-
lary and field data to the analysis, besides increasing 
reliability in estimating AGB. 

A textual search on Google Scholar was per-
formed, in order to identify statistically relevant tem-
poral patterns of the use of terms such as ‘Carbon 
Sequestration’, ‘Carbon Sequestration + Remote 
Sensing’ and ‘Carbon Sequestration + GIS’ in the liter-
ature. The search was customized to group results by 
ten-year intervals starting in 1951, to highlight the de-
velopment of researches in the subject under review 
over time and the increase in the use of geospatial 
technologies in CS studies (Figure 2).

 Statistical analysis of the data revealed an ex-
ponential increase with time in the number of scientific 
studies on carbon sequestration considering both RS 
and GIS in their methodology. This can be attributed 
to the increase in volume of available satellite image-
ry and the ease of access to their archives witnessed 
over the last two decades to be become available to 

the end user either freely or commercially. Further-
more, the introduction of GIS in the late eighties con-
tributed to this trend as well.

Furthermore, a systematic review was conduct-
ed in two databases other than Google Scholar, name-
ly, Web of Science and Science Direct. The databases 
were accessed using the search terms: “carbon se-
questration”, “above-ground biomass”, “remote sens-
ing”, and “GIS”. The search was applied to articles that 
were published in peer-reviewed journals only. These 
searches collectively yielded 2,771 results. The results 
were pared down to 647 by applying three criteria: 

1. the results were NOT “review papers” OR “con-
ference proceeding” papers and only restricted to 
research articles;

2. the study belonged to terrestrial ecosystems 
excluding the marine and coastal ecosystems; and 

3. the study is not a duplicate from a previous 
search. 

All these articles were downloaded and stored 
using the reference management software (ZOTERO). 
Based on reviewing the abstracts, the list was further 
reduced to 171 by retaining only articles that discuss 
correlation between AGB and RS-based parameters, 
and that use GIS in the analysis (not for mapping only!). 
Finally, the full-text assessment of the final articles was 
used to review geospatial technologies for estimation 
of CS. 

The following subjects will be covered and 
evaluated: RS data types for estimating AGB and CS 
(Subsection 1.3.3.1); the RS-based methods used to 
attain a certain level of accuracy at the species/plant 
communities (multispecies) level (Subsection 1.3.3.2); 
surveys all biophysical predictors used in RS technol-
ogy (Subsection 1.2.3.4); identifies significant RS varia-
bles (Subsection 1.3.3.5); highlights RS-GIS integrated 
models (Subsection 1.3.3.6); and presents arid lands 
case studies with challenges and opportunities (Sub-
section 1.3.4).
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Infographic 6: Geospatial technologies for biomass and carbon assessment offer numerous advantages 
over traditional methods.
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Figure 2: Textual analysis using Google Scholar. The terms used are: Carbon Sequestration, Remote 
Sensing and GIS. (Dahy et al., 2019, 2020; Salem Issa et al., 2020a).
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 1.3.3.1 Remote Sensing Data Types

Data from RS satellites are available at various 
scales, from local to global, and from several different 
platforms. There are also different types of sensors 
both passive, such as optical and thermal RS sensors, 
and active, such as Radar and Light Detection and 
Ranging (LiDAR) sensors, with each having its advan-
tages and disadvantages. Benefits and limitations of 
these sensors are shown in Appendix 2. The optical 
sensors, sometimes called passive sensors, are RS 
systems relying on visible and reflected infrared light 
(Zhao et al., 2016). Appendix 3 shows the specifica-
tions of the RS optical sensors most commonly used 
for AGB estimation. While active sensors are the sen-
sors that emit and record backscatter values or inter-
ferometry technique in a portion of the electromagnet-
ic spectrum (Ghasemi et al., 2011).

Despite the successful application of any sen-
sors in AGB estimation, there are challenges related 
to acquisition costs, area coverage (swath width), and 
limited availability. RS data are nowadays abundant and 
widely available for a fraction of the cost required only 
a decade ago. Furthermore, these data are captured 
with various, radiometric, spectral, spatial and temporal 
resolutions, hence meeting the needs for AGB detec-
tion, mapping and assessment. Selecting the “right” 
sensor is associated with the specific data availabili-
ty of the area under study, project budget, technical 
skill requirements for data interpretation and software 
packages. The resolutions of the sensors used are 
pre-defined to meet the researcher’s needs and spec-
ifications, although it happens that a specific sensor’s 
data are the only available for a study area. Many soft-
ware packages can perform digital images processing 
and spatial analysis like ERDAS imagine, ENVI, ArcGIS 
and other open-source software like QGIS and Goog-
le Earth Engine. These packages are relatively easy to 
use and can produce exceptional results.

Statistical analysis based on the 171 papers re-
viewed reveals that around two thirds of these studies 
used passive (optical) sensors (with different spatial reso-
lutions), while the remaining third used active sensors (al-
most equally split between RADAR and LiDAR) (Figure 3).

Around 40% of the studies using optical sen-
sors used coarse spatial resolution (>100 meters) 
sensors like MODIS and SPOT VEG. Almost the same 
percentage of studies (40%) used moderate spatial 
resolution (~10- 100 meter) sensors like Landsat, IRS, 
and SPOT. Additionally, around 20% of these studies 
used fine spatial resolution sensors (sub-meter to 5 
meters) like IKONOS, Quickbird and World View. 

To improve the accuracy of estimating AGB, in-
tegration of more than one sensor is becoming a trend 
(around 17% of the reviewed studies), as well as the 
integration with GIS-based approaches (around 14% 
of the reviewed studies). It was observed that more 
than 60 studies were conducted using these two ap-
proaches. Statistical results further showed that the 
number of studies that estimate AGB at plant species 
levels, instead of forests in general or mixed species, 
was increasing. Many plant species are not separable 
targets using RS because they are indistinguishable 
from other plants due to their spectral similarities (de-
tecting, mapping, and classification of vegetation will 
be discussed in separate Subsection, 1.3.3.3). 

Hence, resolution concerns such as high spatial 
resolution (e.g., IKONOS) and high spectral resolution 
(e.g., hyperspectral) should be taken into account as 
they help resolve such ambiguities and play essential 
roles in the quality of the resulting maps (Thenkabail et 
al., 2004). Nowadays, RS data are widely available for a 
fraction of their cost only a decade ago. Figure 3 shows 
the proportion of utilizing different sensors with differ-
ent number of bands for the estimation of the biomass 
and carbon sequestered. 

Accurate image classification relies on the suc-
cessful extraction of pure spectral signature for 
each species, which is often dictated by the 
spatial resolution of the observing sensor and 
the timing of observation (Xie et al., 2008). 
For example, archived and recent Landsat 
imageries are available and are freely down-
loadable from the USGS website, providing a 
globally consistent record of archived im-
ageries since 1972; other resources 
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are being continuously published and added to the in-
ternet. Bryceson (1991) used the habitat type, condition 
and soil type as the delineating parameters to locate 
Chortoicetes terminifera (Australian plague locust) by 
using Landsat-5 multispectral scanner data. Anderson 
et al. (1993) mapped Ericameria austrotexana infesta-
tion in a large homogenous area using Landsat The-
matic Mapper (TM) imagery. 

The spectral radiances in the red and near-in-
frared regions, in addition to others, were used for veg-
etation mapping by RS technology. The spectral signa-
tures of photosynthetically and nonphotosynthetically 
active vegetation showed noticeable differences and 
could be utilized to estimate forage quantity and quali-
ty of grass prairies (Xie et al., 2008). Moreover, discrim-
ination of vegetation species from single imagery is 
only achievable where a combination of leaf chemistry, 
structure and moisture content culminates to form a 
unique spectral signature. 

As the detection and estimation of biomass are 
sensed from space, the crown biomass component 
has gained prominence in the majority of the relevant 
studies  (Cheng et al., 2014; Clark et al., 2005; Juck-
er et al., 2017; N\a esset & Økland, 2002;  Ozdemir, 
2008; Popescu et al., 2003). The unique pattern of 
crown palm trees, for example, makes them easily 
distinguishable from other trees on satellite imagery 
(Shafri et al., 2011).

 It is worth mentioning that most of these stud-
ies were conducted on boreal and tropical forests with 
a small portion conducted on arid and semiarid regions 
(around 10%). This could be due to the early availability of 
geo-spatial technologies in the developed northern coun-
tries (boreal forests) and the relative importance of the 
tropical rainforests to the global carbon cycle (Figure 3).

 1.3.3.2. Remote Sensing Based Methods

To explore the potential of RS-based meth-
ods for extracting biomass information in different 
environments, various techniques and sensors have 
been used and tested in numerous studies. Optical, 

RADAR, and LiDAR data have been extensively used 
to estimate AGB with a variety of methods (Clerici et 
al., 2016a). AGB studies using geospatial technologies 
can be aggregated according to the level of the meth-
odological complexity to several tiers including differ-
ent levels of detail and accuracy. 

The Intergovernmental Panel on Climate Change 
(IPCC) proposed three tiers: Tier-1, Tier-2, and Tier-
3 (Gibbs et al., 2007; Henry et al., 2011; TSITSI, 2016). 
Tier-1 is the basic method based on the ‘biome aver-
age’ approach. It is the simplest level using the globally 
available data, generalized equations, and provides a 
rough approximation of biomass, and hence CS, and 
could be used as a starting point for decision-makers; 
however, it can provide inaccurate results with a high 
level of uncertainty (Gibbs et al., 2007). Tier-1 consid-
ered a generalized biomass equation for the ecological 
zones, and is typically used when no species-specific 
equations exist (Henry et al., 2011). 

Tier-2 is an intermediate level that is based on 
the volume equation and wood density. It is used when 
species-specific volume equations exist, and woody 
density for the specific plant species is available. The 
volume is then converted to biomass using wood 
density and a default biomass expansion factor (BEF) 
(Eggleston et al., 2006; Henry et al., 2011). 

Finally, Tier-3, the most demanding in terms of 
complexity and data requirements, is based on using a 
species-specific biomass equation to calculate either 
total or partial biomass. Partial biomass is obtained by 
adding up the biomass estimates obtained from the spe-
cies-specific equations for the different compartments.

 Tier-2 and Tier-3 levels are more dependent 
on ground-based measurements of the tree (i.e., DBH 
and height) and building the predictive relationships 
(allometric equations) (Gibbs et al., 2007). This makes 
these two levels more expensive to implement than 
Tier-1. It is worth noting here that the precision for a 
given species generally increases with the increase in 
the Tier number (Henry et al., 2011).
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A geospatial approach is widely used to col-
lect information regarding forest AGB and vegetation 
structure as well as to monitor and map vegetation 
biomass and productivity at large scales (Iizuka & 
Tateishi, 2015; Main-Knorn et al., 2011; Makinde et al., 
2017; Pflugmacher, 2011). Using RS, GIS and modeling 
to study the current state of carbon sequestration and 
its future dynamics, are promising and have a poten-
tial ability as an innovative approach to tackle the eco-
logical assessment problems (Lal, 2002). RS-based 
methods have seen widespread use among the re-
search community thanks to their unique characteris-
tics either in data collection or in results presentation. 
RS data can sense and record spatial variability, spa-
tial distributions, spatial patterns of forests and assess 
their changes over time (Zhao et al., 2016). 

For mapping vegetation using RS data, a mul-
ti-steps process is usually applied (detecting, map-
ping, and classification of vegetation will be discussed 
in separate Subsection, 1.2.3.3).

 The first step involves image preprocessing 
and aims at enhancing the quality of original images. 
For example, panchromatic band with 15 m spatial 
resolution, in Landsat imagery, that can be used to 
pan-sharpen other bands and hence increase their in-
terpretability, has been added to Landsat’s multispec-
tral sensors (Phiri & Morgenroth, 2017). Previous stud-
ies showed that such use of the panchromatic band 
helped achieve dramatic improvements (15%) in clas-
sification accuracies (Gilbertson et al., 2017). 

The second step involves determining the level 
of vegetation classification (at community or species 
level). The third step determines the correlation be-
tween the vegetation types and spectral character-
istics of RS imagery. Vegetation data is identified by 
interpreting satellite images based on the elements 
such as image color, texture, tone, pattern and associ-
ation information. 

Lastly, the final step includes translating the 
spectral classes into vegetation types by assigning 
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Figure 3: Geospatial input data used in reviewed papers at different forests. (Dahy et al., 
2019, 2020; Salem Issa et al., 2020a).
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each pixel of the scene to one of the vegetation groups 
defined in the vegetation classification system select-
ed in the second step. Classification methods are 
broadly based on the pixel-based classification (PBC) 
approach or the object-oriented based classification 
(OOC) approach. Both methods have their advantages 
and disadvantages depending on their areas of appli-
cations, and most importantly, the RS datasets that 
are used for information extraction (Jawak et al., 2015). 
OOC methods group several pixels with homogene-
ous properties into an object/objects instead of pixels, 
which are considered as the basic unit for analysis, 
while PBC approaches are based on combining re-
flectance pixel values into separated spectral clusters 
(Blaschke, 2010; Myint et al., 2011a).

AGB and hence CS can be estimated from dif-
ferent RS data types using various approaches (Figure 
4). Landsat series, for example TM, Enhanced Themat-
ic Mapper (ETM+), and Operational Land Imager (OLI), 
have been historically used to map biomass and car-
bon in a variety of ecosystems, due to the relevance 
of their spectral bands, the continuity of the program, 
and the suitability of the 30 meter spatial resolution for 
regional mapping (Clerici et al., 2016a).

Although biomass cannot be directly measured 
from space, the use of spectrally-derived parameters 

from sensor reflectance (bands), including vegetation 
indices (VIs) that were created to improve prediction 
accuracy, enables increased biomass prediction ac-
curacy when combined with field-based measure-
ments (Pandit et al., 2018).

RS data correlates with plot-based field meas-
urements to estimate AGB and hence CS. In general, 
RS data are empirically linked to AGB measurements 
of field plots using different regression analyses and 
algorithms (Wani et al., 2015). 

There are many methods of image analysis that 
can be integrated to achieve a better accuracy. Algo-
rithm development and implementation is an impor-
tant subject in studies estimating biomass (Kumar & 
Mutanga, 2017). The advanced machine learning al-
gorithms methods and/or other state-of-the-art pro-
cessing techniques can reveal important information 
about the spatial and temporal biomass patterns by 
determining relationships between field measure-
ments and RS data, especially over large areas (Kumar 
& Mutanga, 2017). 

To determine the relationship between above-
ground field biomass and RS data, researchers have 
used linear regression models with or without log 
transformations of field biomass data, and multiple 
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regressions with or without stepwise selection (Clew-
ley et al., 2012; Robinson et al., 2013). Artificial neural 
networks, semi-empirical models, nonlinear regres-
sion, and nonparametric estimation techniques (e.g., 
k-nearest neighbor and k-means clustering) have also 
been used (Castel et al., 2000; Lu, 2006; Wijaya & 
Gloaguen, 2009). 

However, few studies have investigated ap-
proaches other than the empirical relationship with 
spectral bands or VIs (Eisfelder et al., 2012). One of 
these approaches is Monteith’s efficiency model for 
obtaining indirect estimates of absorbed photosyn-
thetically active radiation (APAR) from the red and IR 
reflectance characteristics of the vegetation where 
APAR is used as an indication of how efficiently ab-
sorbed energy is converted to dry biomass (Monteith, 
1972). Rosema (1993) used a simulation of vegetation 
development from daily total evapotranspiration with 
the in/out radiation of METESTAT in order to estimate 

the herbaceous biomass in savannah grassland in Sa-

hel countries. 

Other studies used canopy functioning pro-

cess-based models coupled with physical radiative 

transfer models to estimate biomass production from 

RS data (Williams, 2010). Fourier transform textural or-

dination (FOTO) was used by Morel et al. (2012) with 

SPOT5 data for estimation AGB in Thailand with the 

R value equal to 0.83. Regression, ordinary kriging, 

co-kriging, and stepwise linear regression have been 

used in various studies and it was found that the 

combination of RS and geo-statistics can im-

prove the accuracy of biomass estimates more 

than the use stepwise linear regression only 

(Mutanga & Rugege, 2006). 

Extensive field knowledge and expert 

knowledge may help improve classification 

accuracy. Studies have shown that 
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classification accuracy can be greatly improved after 
applying expert knowledge (empirical rules) and ancil-
lary data to extract thematic features (e.g., vegetation 
groups) (Xie et al., 2008). Fieldwork is the foundation 
for RS technology allowing to extend limited vegeta-
tion information to large scale predictions (Wu et al., 
2016). This direct mapping approach is more accurate 
at depicting variations in biomass across the land-
scape, making it easier to update the maps as needed 
(Kelsey & Neff, 2014).

1.3.3.3. Detecting and Mapping Plant 

Species Using Satellite Imagery

Accurate mapping of vegetation is a critical and 
important task for many environmental-related issues 
such as forest management, biomass estimation, or 
terrestrial CS quantification.  Geospatial technologies 
(RS & GIS) are well established for their capabilities of 
measuring and estimating forest AGB and for monitor-
ing and mapping vegetation biomass at large scales 
(Dahy et al., 2019; Iizuka & Tateishi, 2015; Main-Knorn 
et al., 2011; Makinde et al., 2017; Maynard et al., 2007; 
Pflugmacher, 2011; Salem Issa et al., 2020a). 

Methods for measuring and mapping vege-
tation cover using RS and GIS are well developed; 
however, they exhibit performance issues in certain 
ecosystems particularly, arid land ecosystems where 
a high background reflectance contribution to the 
pixel value remains a great challenge. Besides, sev-
eral plant species are hardly distinguished from other 
objects because of their spectral resemblances. The 
advent of high spectral and spatial resolutions data 
helped in resolving such ambiguities and played an 
essential role in improving the quality of land cover 
maps (Thenkabail et al., 2004). 

Furthermore, satellite imagery variables are only 
capable of mapping and correlating environmental var-
iables if the vegetation spectra are detectable within 
the pixel, a great challenge that can only be overcome 
in certain arid land environment (Aly et al., 2016a; Old-
eland et al., 2010; Tian et al., 2016). This last constraint 
presents a foremost challenge in the desert ecosys-

tem, usually with sparse vegetation cover, producing 
a weak spectral object requiring a higher resolutions’ 
imagery to be captured (Bradley et al., 2019). 

Hyperspectral sensors showed plausible clas-
sification accuracies in mapping major forest species 
and predicting the susceptible areas of fruit malforma-
tion (Nagaraja, 2009). Hebbar et al. (2014) used LISS-
IV data to classify fruit trees and found that old and ma-
ture trees were classified more accurately while young 
and recently planted ones (3 years or less) showed 
poor classification accuracy due to mixed spectral sig-
nature, wider spacing and poor stands of trees. 

While high-resolution data offer more spatial 
detail, they present certain disadvantages including 
high cost especially when it applies to broad areas, the 
need for large data storage, complex technicalities and 
long processing times. Furthermore, moderate resolu-
tion satellites (e.g. Landsat, and SPOT) proved to be ef-
fective in land cover classification for different research 
purposes and in different regions (Aly et al., 2016a; El-
hag, 2016; Rembold et al., 2000; Shaker et al., 2012). 

Such multispectral optical sensors have been 

widely utilized operationally in estimating and mapping 

AGB (Eisfelder et al., 2012; Kumar et al., 2015; Kumar 

& Mutanga, 2017; TSITSI, 2016; Vashum & Jayakumar, 

2012). Indeed, moderate resolution satellite data offer 

plausible results after conducting specific approaches 

such as pan-sharpening or fusion techniques. Starting 

with Landsat-7 ETM+, a panchromatic band with 15 m 

spatial resolution, that can be used to pan-sharpen 

other bands and hence increase their interpretabili-

ty, was added to the already existing Landsat’s mul-

tispectral sensors (Phiri & Morgenroth, 2017; Shahar-

um et al., 2018). 

Previous studies showed that such use of the pan-

chromatic band helped achieve dramatic improvements 

(more than 15%) in classification accuracies (Gilbertson 

et al., 2017). The Landsat program, MSS, TM, ETM+ and 

the most recent Landsat-8 OLI, present unique advan-

tages in land cover classification applications because: 
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1. it is the longest running uninterrupted Earth ob-

servation program since 1972; 

2. its archives are the first to offer global images 

free of charge (free access approach since 2008) 

(Phiri & Morgenroth, 2017; Turner et al., 2015); 

3. the current effects of climate change make 

the research on land cover classification methods 

based on the archived Landsat images an important 

resource (Barbosa et al., 2014; De Sy et al., 2012); 

4. it is a very good source for vegetation change 

detection over large areas due to its relatively high 

temporal resolution (16-days revisit) and large swath 

(185 km); 

5. another benefit of Landsat is to offer atmos-

pherically corrected reflectances. Atmospheric 

correction is a critical step to minimize aerosol and 

cloud contamination and; 

the suitability of the spatial resolution of Land-
sat series for regional mapping of biomass and carbon 
in a variety of ecosystems (Clerici et al., 2016b). Bau-
mann et al. (2018) found that Landsat-8 OLI is reliable 
for mapping woody vegetation (tree cover and shrub 
cover) in their study in Gran Chaco, south America. In 
their study for mapping tree canopy cover and AGB 
in woodlands landscape of Burkina Faso using Land-
sat-8 OLI, Karlson et al. (2015) found that the image 
texture is more correlated to tree cover attributes, in 
particular AGB, in open canopy conditions compared 
to closed canopies due to its ability to capture shadow 
structures caused by large trees (Karlson et al., 2015).

There is no universal classification system that 
can be used for all types of imagery, at different scales, 
and for different purposes. Classification methods are 
broadly divided in two categories: pixel-based classi-
fication (PBC) and object-based classification (OOC). 
They both have advantages and disadvantages de-
pending on their areas of applications and, most im-
portantly, the RS datasets they use for information ex-
traction (Jawak et al., 2015). 

PBC methods are based on using reflectance 
values to group pixels into separate spectral clusters; 
while OOC methods group contiguous pixels with 
homogeneous properties into objects, referred to as 
segments, that serve as the basic units for analysis 
(Blaschke, 2010; Myint et al., 2011b). OOC methods 
have gained increased interest with the advent of high 
and very high-resolution RS imagery (Jawak et al., 2013). 
Furthermore, OOC paves the way for combining spec-
tral and spatial information, and in doing so potentially 
offers a more comprehensive classification approach  
that increases the results’ accuracy (Wang et al., 2016).

 However, under- and over-segmentation errors 
may occur in the segmentation phase and lead to a 
reduction of classification accuracy; especially when 
an image object covers multiple classes. This usually 
leads to classification errors as all pixels in each mixed 
image object are assigned to the same class (Jawak et 
al., 2015; Liu & Xia, 2010).

PBC, on the other hand, has proven very suc-

cessful with low to moderate spatial resolution data. It 

uses a combined spectral response from all pixels in 

a training set for a target class. The resulting signature 

comprises spectral responses from a group of differ-

ent land covers in the training samples, while the clas-

sification system merely ignores the impact of mixed 

pixels (Lu & Weng, 2004). PBC is commonly divided 

into supervised and unsupervised classification meth-

ods. Both approaches, separately or together, were 

used widely to run LULC classification in many regions 

and both have advantages and disadvantages. The 

use of vegetation indices (such as NDVI, EVI, SAVI) is 

considered as part of the unsupervised classification 

method. These indices use vegetation spectral 

characteristics to assess the status of vegeta-

tion cover (see Subsection 1.2.3.5). 

The conventional PBC is quite limited 

because images of medium to low resolu-

tions present a high level of heterogeneity and 

internal class variation within the same 
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scene (Kux & Souza, 2012). OOC approach considers 

the organization of individual pixels into groups (seg-

ments) that correspond to real-world objects in the 

identification of classes. Object-oriented image anal-

ysis involves partitioning the image into meaningful 

segments that replace pixels as the basic processing 

units (Benz et al., 2004). 

In general, the OOC algorithm initially performs 
segmentation of the whole image, then, the user de-
fines a set of knowledge-based classification rules 
(spectral, spatial, contextual and textual information) to 
describe each class. Thereafter, the classifier is cho-
sen to assign each segment to the proper class ac-
cording to the user-defined rules (Jawak et al., 2015). 
The OOC procedure involves the selection of training 
samples that represent the features to be classified. 
These features (objects) are then defined within the 
software based on rules that are further used to model 
the individual or groups of objects based on color, size, 
shape, position, direction, distance, orientation, distri-
bution throughout the image, texture, as well as other 
user-defined parameters.

Many algorithms were developed for tree crown 
detection and mapping, (Chepkochei, 2011; Hebbar et 
al., 2014; Lack & Bleisch, 2010; Rizvi et al., 2019; Sa-
hay et al., 2017). Nevertheless, different methods may 
give different results while working in the same envi-
ronment. Consequently, the results of tree detection 
and mapping can be affected by algorithm features.  
It is imperative to select the proper algorithm to get 
appropriate results. Likewise, for any algorithm to work 
properly, crowns should be detectable and segment-
ed as an object in the image before classification. 
Training sets of the different classes to be identified 
and mapped must be selected very carefully for not 
to contain any contribution from the background nor 
any other class reflectance. This can be done by visual 
analysis and based on the interpreter’s expertise and 
knowledge of the study area. 

Hybrid classification approaches that combine 
supervised and unsupervised algorithms have gained 
importance. Since the early 1990s, several hybrid 
methods have been tried and refined in many cases 

to improve classification accuracy (Jawak et al., 2015; 
Kamusoko & Aniya, 2009; Kuemmerle et al., 2006; 
Lo & Choi, 2004; Pradhan et al., 2010; Rozenstein 
& Karnieli, 2011; Shila, 2010). Hybrid methods have 
demonstrated significant improvement in results’ in-
terpretation where there is complex variability in the 
spectral data within information classes. 

The algorithms of most hybrid methods involve:

1. initial arrangement of the imagery by spectral 
clustering, 

2. assigning clusters to user-defined classes, and 

3. classification of the entire image using super-
vised learning (Jawak et al., 2015). 

Lo and Choi (2004) suggested that a hybrid ap-
proach can be economically implemented in a stand-
ard image processing software package to produce 
LULC maps with higher accuracy (up to 96% in urban) 
from moderate spatial resolution data ETM+ (Lo & 
Choi, 2004). In their study in eastern Europe, Kuem-
merle et al. (2006) combined the advantages from 
supervised and unsupervised methods to derive a 
land cover map from Landsat data (Kuemmerle et al., 
2006). They conducted unsupervised classification 
to minimize bias in the selection of training areas and 
seed signatures, then eighty class signatures were ex-
tracted to run the supervised classification using the 
maximum likelihood classifier. The accuracy of the ap-
proach was estimated at 84%, 87%, and 91% for ag-
riculture area, forests, and dense forests, respectively. 

Shila (2010), used a hybrid classification meth-
od in Isfahan, Iran from ETM+ to increase automation 
and improve the accuracy of image data classification 
by taking advantage of both supervised and unsu-
pervised classification methods. They found that the 
accuracy of the produced map reached 93%. Rozen-
stein and Karnieli (2011) examined combining signa-
tures from both supervised and unsupervised training 
data (hybrid classification) and showed that they pro-
vided significantly more accurate results in Negev de-
sert using TM image. 
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The majority of the UAE’s territory is formed of 
desert ecosystems representing the mainland cover 
class of the country's land area. Date palm (DP) trees 
are known for their resilience to hard conditions requir-
ing minimum water supply, tolerating high tempera-
tures and drought, and sustaining high levels of salinity.

 Measurement and analysis of DP in the UAE, us-
ing RS and GIS techniques, are almost absent and have 
seen very limited application examples in the country 
and the Gulf Cooperation Council region at large (Issa 
& Al Shuwaihi, 2012). Such investigations are vital for DP 
planning, management, and related resource studies. 
Sohl (1999) used multi-temporal TM imageries to pro-
vide locational, quantitative, and qualitative information 
on land cover change within the Abu Dhabi Emirate. His 
main concern was mapping changes in vegetation cov-
er in Abu Dhabi Emirate in general rather than DP. 

Goudie et al. (2000) have applied a car-
tographic approach to study coastal changes in Ras 
Al Khaimah (UAE); they reconstructed the history of 
coastal change in the study area. Alhameli and Alshe-
hhi (2004) used historical aerial photographs, images 
and old documents to describe the rapid develop-
ment of the UAE on selected sites with no meas-
urements or analysis of DP mapping or other related 
parameters. Abdi and Nandipati (2010) investigated 
land cover changes in Abu Dhabi capital city and sur-
rounding regions from 1972 to 2000 using Landsat 
images. The study conducted a simple change de-
tection analysis of four land cover classes; none of 
them focused on DP trees. 

1.3.3.4. Biophysical Predictors

The biophysical predictors of vegetation growth 
need to be considered in RS studies due to the differ-
ent rates of growth of various parts of such vegetation 
(Chong et al., 2017). These predictors can be detected 
by remote sensors and are manifested through shad-
ow, roughness, and spectral response (McMorrow, 
2001). RS variables measured and correlated with bio-
mass quantification include the spectral reflectance of 
vegetation as the spectral properties of AGB obtained 
by the sensors have unique signature correlated with 
chlorophyll content in the plants (Lu, 2006). 

The signals are sensitive to AGB structure and 
influenced by density, shadow, texture, soil moisture 
and roughness, and constitutes one of the RS varia-
bles used in estimating biomass (Baccini et al., 2008; 
Eisfelder et al., 2012). The biophysical predictors used 
for estimating biomass include leaf area index (LAI), 
chlorophyll content, leaf nutrient concentration, height, 
DBH, stand basal area, greenness of canopy, and 
crown measurements like crown area (CA) and crown 
diameter (CD). All of these predictors are traditionally 
used to estimate biomass, but only some are applica-
ble for RS based estimation (Figure 5).

Xiaoming et al. (2005) observed a robust loga-
rithmic correlation between LAI and AGB. LAI can be 
defined as the area of one-sided leaf tissue per unit 
ground and measures the density of the leaves sur-
face in a canopy. Tan et al. (2013) estimated LAI of oil 
palm in Malaysia using UK-DMC2 and ALOS PALSAR. 
They concluded that an increase in the LAI shows a 
proportional increase in the spectral reflectivity or Nor-
malized Difference Vegetation Index (NDVI) during the 
initial growth stage; however, it presents little to no 
increase once it attains the full canopy cover due to 
sensor saturation. 

The ability of hyperspectral RS to collect reflec-
tance in many narrow bands makes it particularly use-
ful for extracting vegetation parameters, such as LAI, 
chlorophyll content, and leaf nutrient concentration 
(Im & Jensen, 2008). Large scale photographs have 
been used to measure various forest characteristics, 
such as tree height, CD, crown closure, and stand area 
(Clark et al., 2005).

 In their study on the indirect estimation of bio-
mass, Popescu et al. (2003) used RS data to de-
termine tree canopy parameters, such as CD, 
using multiple regression analysis and canopy 
reflectance models. The CA can be measured 
by satellite imageries and, thus, provide bi-
omass estimation. Suganuma et al. (2006) 
found that medium-resolution or more de-
tailed spatial resolution data could be used 
for the crown coverage.
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 Crown projection area (CPA), which is the can-
opy area that is covered by an individual tree, can be 
calculated by delineating trees using object-based 
image analysis (Chong et al., 2017; McMorrow, 2001). 
Greenberg et al. (2005) have effectively used IKONOS 
data (spatial resolution 4 meter) for estimating crown 
projected area, DBH and stem density. Song et al. 
(2010) estimated tree crown size from IKONOS and 
Quickbird images and concluded that this approach 
could provide estimates of average tree crown size for 
hardwood stands.

Height information of a tree can be retrieved 
using various approaches of RS, e.g., LiDAR and Ra-
dar. Height has been shown to be a potentially suc-
cessful indicator for age in oil palms, for example, and 
it is widely used in estimating forest biomass (Chong 
et al., 2017). Radar backscatters (P and L bands) are 
positively correlated not only with tree height and age 
but also with other major biophysical forest parame-
ters such as DBH, basal area, and total AGB (Kumar 
et al., 2015). 

LiDAR sensor can directly measure three-di-
mensional (3D) components of vegetation canopy 
structure and is widely used in the estimation of forest 
biophysical parameters (Appendix 2). LiDAR data are 
used for biomass estimation for different forest envi-
ronments; tropical forest biomass, temperate mixed 
deciduous forest biomass, and in measurements of 
biophysical parameters such as tree height and stand 
volume, and CD and canopy structure in general. 

The two-dimensional data (2D) have limitations 
in estimating vertical vegetation structures such as 
canopy height, which is one of the critical biophysical 
parameters for biomass estimation (Appendix 2). 

Recently, optical data such as ALOS, panchro-
matic RS instrument for stereo mapping (PRISM), 
IKONOS stereo satellite images, and SPOT have been 
used to provide a stereo viewing capability that can be 
used to develop vegetation canopy height, thus im-
proving biomass estimation performance. St-Onge et 
al. (2008) assessed the accuracy of the forest height 
and biomass estimates derived from an IKONOS ste-
reo pair and a LiDAR digital terrain model.

Reinartz et al. (2005) used SPOT 5 HRS for 
forest height estimations in Bavaria and Spain, while 
Wallerman et al. (2010) investigated 3-D information 
derived from SPOT 5 stereo imagery to map forest var-
iables such as tree height, stem diameter and volume.

1.3.3.5. Remote Sensing Variables

Vegetation indices are generally used to esti-
mate biomass in many studies (Clewley et al., 2012; 
Robinson et al., 2013; Schlerf et al., 2005; Salem Issa 
et al., 2019; Terakunpisut et al., 2007). VIs are calculat-
ed from mathematical transformations of the original 
spectral reflectance data and can be used to inter-
pret land vegetation cover (Das & Singh, 2012). VIs are 
applied to remove the variations caused by spectral 
reflectance measurements while also measuring the 
biophysical properties that result from the soil back-
ground, sun view angles, and atmospheric conditions 
(Lu, 2006).

The notion of VI is well adapted for quantifying 
vegetation over large areas, for example, over areas 
covering many pixels of an image (Bannari et al., 1995). 
VIs are quantitative measurements indicating the vigor 
of vegetation. They show better sensitivity for the de-
tection of biomass than individual spectral bands (Ban-
nari et al., 1995). 

Previous studies have shown a significant posi-
tive relationship between biomass and VIs (Patel et al., 
2007). In order to examine the relationship between AGB 
and RS variables including individual band reflectance 
values and VIs, Günlü et al. (2014) used Landsat TM in 
their study and found that VIs present better estimation 
of AGB in Anatolian pine forests with R2 equal to 0.606, 
compared to individual band reflectance with R2 of 0.465.

AGB models could be developed using many 
available predictors, grouped into two distinct catego-
ries: raw bands of the sensor as reflectance and VIs, 
including the simple ratio (SR), difference vegetation 
index (DVI), NDVI, ratio vegetation index (RVI), global 
environmental monitoring index (GEMI), soil adjusted 
vegetation index (SAVI), enhanced vegetation index 
(EVI), tasseled cap index of greenness (TCG), tasseled 
cap index of brightness (TCB), tasseled cap index of 
wetness (TCW), and many others.
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All above indices can measure the presence 
and density of green vegetation, overall reflectance 
(e.g., differentiating light from dark soils), soil moisture 
content, and vegetation density and structure). Most 
VIs rely on red and infrared (IR) bands, which are the 
raw bands present in earth observation satellites and 
often contain more than 90% of the information related 
to vegetation (Baret et al., 1989; Huete, 1988; Jiang et 
al., 2008; Pinty & Verstraete, 1992; Turner et al., 1999). 

Early studies have shown that both the simple 
ratio (Near Infrared /Red) and the NDVI were closely re-
lated to dry matter accumulation (Baret et al., 1989). The 
use of vegetation and other indices (e.g., NDVI, EVI, SAVI) 
are considered as part of the classification method. 

The principle of applying NDVI, for example in 
vegetation mapping, is that vegetation is highly reflec-
tive in the near infrared (NIR) and highly absorptive in 
the visible red. The contrast between these channels 
can be used as an indicator of the vegetation gree-
ness (Xie et al., 2008, p. 200). Sonnenschein et al. 
(2011) used NDVI, SAVI and TCG from Landsat image-
ries for forests mapping in Greece. 

In a study conducted in Saudi Arabia, Aly et al., 
2016b found that NDVI images of Landsat could be 
classified into three classes of vegetation cover in 
arid regions, namely dense vegetation cover (NDVI > 
0.5), moderate vegetation cover (NDVI 0.25–0.5), and 
sparse vegetation cover (NDVI < 0.25). 

The ability of VIs to separate the vegetation from 
its background varies from one ecoregion to another, 
and from one plant species to another. VIs commonly 
used to estimate biophysical variables such LAI, APAR 
and biomass include NDVI, EVI, and SAVI (Kumar et al., 
2015, p. 20). NDVI is a prominent and frequently used 
index with different spatial resolutions of the optical 
sensors (Figure 6). 

Thenkabail et al. (2004) implemented a regres-
sion model using NDVI and optical bands reflectance 
number 3 and 4 of IKONOS for estimation of AGB for 
oil palm in Africa, with 64–72% accuracy. Morel et al. 

(2012) found that the Normalized Difference Fraction 
Index (NDFI) of Landsat ETM+ data performs better 
when estimating AGB for oil palm in Malaysia with 
kappa coefficient equal to 0.87. Srestasathiern and 
Rakwatin (2014) found that the best performing VI to 
separate oil palms from its background was the Nor-
malized Difference Greeness Index (NDGI), which is a 
normalized ratio of green to the red band, and displays 
the highest discriminating power using a histogram 
dissimilarity metrics. 

Nevertheless, these results could not be gen-
eralized as all VIs must be tested. Zhao et al. (2016) 
examined specific spectral bands of Landsat and 
their relationships with AGB in the Zhejiang province 
of Eastern China. They found that, when the forest 
stand structure is complex, VIs including shortwave 
infrared spectral bands (SWIR) had a higher correlation 
with AGB than others. However, the VIs including NIR 
wavelength improved correlations with AGB in rela-
tively simple forest stand structures. VIs can maximize 
the sensitivity for recording the green vegetation situ-
ation (Günlü et al., 2014).

The choice of adequately performing VIs de-
pends on the type of ecosystem, the environmental 
conditions and the spectral information available. In 
their study on forests in Bogotá, Colombia, Clerici et 
al. (2016a) estimated AGB and found that the best per-
forming AGB estimation model was based on the RVI, 
with R2 equal to 0.582. They also found that atmospher-
ic and topographic correction was vital in improving 
model fit, especially in high aerosol and rugged terrain.

However, some studies had shown poor rela-
tionship between biomass and VIs compared with 
using raw bands (Onisimo, Mutanga & Skidmore, 
2004). Singh et al. (2014) used two optical sen-
sors (Landsat TM and SPOT 5) to assess their 
efficacy and evaluate disparities in forest com-
position and AGB in Sabah, Malaysia. They 
found that NDVI derived from SPOT 5 could 
distinguish between pristine forests and oil 
palm trees. In fact, the reflectance values of 
bands 3 (red sensitive) and 4 (NIR sen-
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sitive) of Landsat TM were strongly correlated with the 

field-based AGB values while both VIs derived from 

Landsat TM and SPOT 5 (such as NDVI) were weakly 

correlated with the field-based AGB values. The data 

saturation problem in Landsat imagery is well recog-

nized and is regarded as an important factor resulting 

in inaccurate forest AGB estimation, especially when 

AGB is high (>130 Mg.ha−1) and when the forest struc-

ture is heterogeneous (Zhao et al., 2016). In a study to 

estimate total living biomass of Miombo woodlands 

of Tanzania, Gizachew et al. (2016) found no clear ev-

idence of data spectral saturation at higher biomass 

value in open canopy woodlands. They suggested that 

Landsat-8 OLI derived NDVI could be used as suitable 

auxiliary information for carbon monitoring in the con-

text of the reducing emissions from deforestation and 

forest degradation program (REDD+).

1.3.3.6. Remote Sensing/GIS 

Integrated Models

GIS is a platform hosting spatial databases ca-
pable of assembling and integrating geographically 
referenced data, running spatial analysis, and integrat-
ing various types and formats of spatial data (Ardö & 
Olsson, 2003; Deng et al., 2011; Kamusoko & Aniya, 
2009). A repository of various data  sources (e.g., forest 
inventory, land use maps, elevation and RS data) can 
be used to measure vegetation parameters over large 
areas (Labrecque et al., 2006). GIS is usually employed 
to process model inputs and to visualize results (Deng 
et al., 2011). However, building GIS-based models to 
predict future scenarios for forest management and 
the implementation of afforestation plans is another, 
more valuable product. In RS-GIS integrated models, 
RS data are used as input to the GIS model; where GIS 
act as a platform for data layering and database build-

Figure 5: Different biophysical parameters used in RS based estimation of AGB. (Dahy et al., 2020; Salem Issa et al., 2020a).
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ing in order to perform spatial data analysis and map 
creation. This not only saves time, but also allows for 
faster and better communication between research 
centers across the globe (Deng et al., 2011). The use of 
geospatial modeling to study the current state of car-
bon sequestration and its future dynamics is a prom-
ising technique; it has the potential ability to tackle the 
ecological assessment problems (Rattan Lal, 2002). 
Furthermore, as mentioned above, the integration of 
RS data into GIS models enables adding ancillary and 
field data (soil, climate, topography, etc.), in the analy-
sis and increasing reliability in estimating AGB. For ex-
ample, there are different GIS-based AGB estimation 
models that integrate other data models such as: dig-
ital terrain model (DTM), rainfall models, canopy height 
models, atmospheric scattering models, biomass pro-
duction models, grazing models, 3D forest structure 
models and regression models (Aranha et al., 2008; 
G. Baumann, 2009; Cho et al., 2012; Deng et al., 2011; 
Gernhardt et al., 2010; Greenberg et al., 2005; Holm et 
al., 2003; Le Maire et al., 2008; Li et al., 2008; Maynard 
et al., 2007; Montaghi et al., 2013; Ibrahim Ozdemir & 
Karnieli, 2011; Ramachandran et al., 2007; Thakur & 
Swamy, 2012; Wang et al., 2010). An integrated classi-
fication approach, coupled with GIS analysis, has been 
employed successfully to improve LULC, forest, and 
biomass mapping for Landsat data (Kamusoko & Ani-
ya, 2009; Labrecque et al., 2006; Ohmann & Gregory, 
2002). Results show that an integration of RS and spa-
tial analysis functions in GIS can increase the overall 
classification accuracy from 50.12% to 74.38% (Myint 
et al., 2011a). Furthermore, the integration with GIS-
based models are becoming more common, used in 
around 14% of the reviewed studies.

1.3.4. Arid Regions Case Studies 

Mapping vegetation for accurate measuring 
of biomass and assessing CS is a significant chal-
lenge, specifically for arid lands, where RS has unique 
challenges that are not typically encountered in other 
sub-humid or humid regions. Major challenges include 
low vegetation signal-to-noise ratios, high soil back-
ground reflectance, presence of biological soil crusts, 
high spatial heterogeneity from plot to regional scales, 

and irregular growing seasons due to unpredicta-
ble seasonal rainfall and frequent periods of drought 
(Bestelmeyer et al., 2015; Cheng et al., 2017; Haughton 
et al., 2018; Wu & Archer, 2005). Additionally, there is a 
relative discontinuity in the long-term measurements 
in arid lands, which hampers reliable calibration and 
evaluation of RS data products. Consequently, RS tech-
niques developed in other ecosystems often result in 
inaccurate estimates of arid lands ecosystem CS. 

Arid lands, defined as regions where annual 
potential evapotranspiration substantially exceeds 
precipitation, are critically important to society, yet ex-
ceptionally vulnerable to climate change (Smith et al., 
2019). Arid lands make up to 40% of the Earth’s land 
surface and provide ecosystem services to more than 
two billion people, including supporting significant 
crop production and forage for wildlife and domestic 
livestock (Bestelmeyer et al., 2015). RS images can re-
duce the complexity of fieldwork by collecting quan-
titative and qualitative information at regular intervals 
and enabling the mapping of inaccessible places, as 
is the case in most arid regions (Abburu & Golla, 2015; 
Al-Ahmadi & Hames, 2009; Diouf & Lambin, 2001; 
Holm et al., 2003; Mangiarotti et al., 2008; McGwire et 
al., 2000; Olsen et al., 2015; Ibrahim Ozdemir & Karnie-
li, 2011; Qi, Huete, et al., 1994; Ren et al., 2011; Ritchie & 
Rango, 1996; Schucknecht et al., 2015; T. Svoray et al., 
2001; Tal Svoray & Shoshany, 2003; Tucker et al., 1985; 
Wylie et al., 1995). 

In their review, Eisfelder et al. (2012) stated that 
RS studies of vegetation in arid regions are scarce, 
and an additional methodological research is needed 
to address the specific challenges faced by RS tech-
niques in these environments. In this study, out of the 
171 reviewed research articles conducted from 1984 
to 2020 to estimate AGB, only 15 studies were con-
ducted in arid lands and another 24 studies in semi- 
arid ecosystems (more than a third of these studies 
were conducted in Niger and Senegal). Figure 7 shows 
the proportions of RS-based AGB estimation studies 
in arid and semi-arid regions taking into account the 
proportion of reviewed studies, sensors used and their 
spatial resolutions, the use of GIS tools and locations 
of the studies.
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As mentioned above, monitoring the spatiotem-
poral dynamics of arid lands ecosystem structure and 
function is therefore a high research priority. Although 
the methods detailing vegetation cover mapping and 
estimation integrating RS and GIS are well developed, 
research on RS-based biomass estimation for arid 
lands is relatively scarce compared to other ecosys-
tems (tropical, subtropical, temperate and boreal for-
ests) (Eisfelder et al., 2012). 

Very few biomass measurements are available 
for plant species in desert ecosystems. Although bi-
omass per unit area is normally low in those regions, 
the vast extent of the Earth’s arid lands gives it a sig-
nificant role as a carbon pool and for the supply of 
essential ecosystem services (Zandler et al., 2015). 
Studies showed a strong link between desertification 
and emission of CO2 from soil and vegetation to the 
atmosphere (Lal, 2001).

 Desertification, and degradation of soils and 
vegetation in arid lands resulting from climatic and 
anthropogenic factors, affects more than one billion 
hectares of soils and more than 2.5 billion hectares 
of rangelands globally. Furthermore, an alarming esti-
mate of six billion hectares of land is affected by de-
sertification per year (Lal, 2001).

 Lal (2001) concluded that the total world histor-
ic loss of carbon due to desertification in the period 
between 1850 and 1998 was in the order of 19–29 pe-
tagram (Pg), an amount that could have been seques-
tered (1 Pg = 1015 gram). Information on biomass helps 
to quantify the resilience of arid land systems and is 

thus essential for sustainable land-use management 
(G. Baumann, 2009). Hence, suitable methods to map 
biomass in arid land regions still need to be developed 
(Mangiarotti et al., 2008).

If plant species are very scattered, which is the 
case for most arid land’s ecosystems, where vege-
tation is characterized by its patchiness pattern, the 
background reflection is mostly related to the soil. 
Hence, the selection of sites must be characterized 
by their relatively high density of plant species under 
study in order to reduce the background effects as 
much as possible. In addition, the selected sites must 
be relatively large in area and be homogenous, to ena-
ble the extraction of real spectral signature that repre-
sent the species to be mapped or to use a minimum 
number of field plots within each pixel as well as to in-
crease the spatial/spectral resolution of the sensors 
used (Eisfelder et al., 2012). 

Moreover, using satellite images to map and 
correlate biomass is only possible if the target vegeta-
tion spectra are strong enough to be identified within 
the pixel (Aly et al., 2016b; Oldeland et al., 2010; Tian 
et al., 2016). This presents a major challenge in 
the desert where vegetation is usually sparse, 
offering a small spectral target that requires 
higher resolutions to be detected (Bradley et 
al., 2019). In the desert environment in China, 
Ren et al. (2011) estimated crop biomass of 
individual components (e.g., leaves, stems) for 
the whole season using red edge reflec-
tance of hyperspectral data. 

Figure 6: The use of vegetation indices and NDVI for estimating AGB. (Dahy et al., 2020; Salem Issa et al., 2020a).
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Optical RS probably provides the best alter-
native to biomass estimation using RS due to its 
historic global coverage, repetitiveness and cost-ef-
fectiveness and thus is useful and operational in 
dry lands. Such regions can be found in most of the 
low-income developing or least developed coun-
tries. Zandler et al. (2015) used Landsat 8 OLI in the 
arid regions of Tajikistan to model total biomass in 
extremely low vegetation cover. The coverage of the 
SWIR spectral region showed the importance in de-
tecting shrubs or nonphotosynthetic vegetation. To 
deal with soil brightness, the study used addition-
al soil adjusted VIs variations such as SAVI, trans-
formed soil-adjusted vegetation index (TSAVI), and 
modified soil-adjusted vegetation index (MSAVI) as 
VIs suffer from various soil effects, especially when 
vegetation cover is low. 

The above study indicated that biomass quan-
tification in this arid setting is feasible but is subject 
to large uncertainties. One of the main challenges 
is the extreme aridity and the associated strong in-
fluence of soil background. Another challenge is the 
fact that large parts of arid or desert plants consist 
of nonphotosynthetic, woody matter and hence the 
photosynthetic signal, captured by most spectral 
bands and indices, may be low in relation to the bio-
mass amount.

1.3.5. Learning Lessons from                        

the Literature Review

Geospatial technologies are practical, feasi-
ble and can provide an adequate mean for AGB as-
sessment monitoring, modeling and management 
of carbon sequestration. This conclusion is the main 
outcome of this literature review and is consistent with 
the consensus of numerous scientific papers on the 
subject published in the last five decades. The use 
of these technologies is an efficient tool, especial-
ly for developing countries, for measuring, mapping, 
monitoring, modeling and management of their CS 
in biomass and soil; leading to improve soil and plant 
productivity, to increase food security, and to control 
land degradation. In their turn, these countries can 

play a significant role in reducing the negative impact 
of climate change, by mitigating carbon emissions. Of 
course, there are many methods that can be used for 
estimating CS, and all of them have their advantages 
and disadvantages. Traditional methods, relying on 
heavy fieldwork measurements, are the most accu-
rate, however, they require significant time, expense 
and labor, and can be damaging for the ecosystems. 

Building allometric equations can help avoid 
the destructive nature and other disadvantages of 
the fieldwork method. However, most of the allomet-
ric equations are mixed species-equations and not 
tailored for single one specie; most of them are also 
built for specific sites and ecosystems (less appli-
cable for arid regions). Also, it is now more and more 
recommended to build allometric biomass equations 
that are correlated with and rely more on geospatial 
techniques to estimate biomass and CS (crown and 
height attributes). Building a database including the 
rates of carbon sequestered and stored for each plant 
species, especially those with high economic values, 
will fill the gap and increase the understanding of the 
atmospheric carbon sequestration potential of plant 
species and ecosystems.

The use of geospatial technologies should al-
ways be accompanied by ground measurements for 
verification and model validation of results which are 
required at some stages in the estimation of biomass. 
The best fit methodology relies on both fieldwork and 
the analysis of RS data and GIS techniques. The sug-
gested process involves three steps, including: pre-
field preparations to identify sample areas of interest, 
fieldwork that includes sample collection and meas-
urement of plant characteristics, and post-field activi-
ty that focuses on processing RS data, classification, 
GIS model development and validation. Assessing 
CS remotely and consistently over large areas varies 
greatly depending on the type of instruments used, 
and the platforms. Nevertheless, these difficulties can 
be solved and tackled using different sensor options 
and other innovative methods, and hence avoiding the 
limitations that relate to these aspects such as scale, 
cost, and associated errors and uncertainties.
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High resolution RS data are the most accu-
rate. However, moderate resolution satellite data, such 
as Landsat, have shown to be effective in estimating 
AGB and, consequently, CS, with good accuracy. Fur-
thermore, these sensors provide invaluable historical 
data to monitor the change of CS over time. Develop-
ing algorithms that combine more than one remote 
sensor is highly important for tackling the challenges 
associated with estimating AGB and subsequently 
assessing carbon sequestration. Merging and fusion 
of more than one set of data have the potential to re-
duce uncertainty errors in biomass estimation. In such 
studies, it is important to consider the effects of biocli-
matic factors depending on parameters such as plant 
age, species, forest type, rainfall, topography, vegeta-
tion structural variations, heterogeneity of landscapes, 
and seasonality. One of the common challenges in 
achieving this, is mapping the spatial patterns of veg-
etation and soil carbon and producing geo-referenced 
estimates of carbon. Such maps provide a better un-
derstanding of carbon dynamics and help quantify the 
regional and global carbon budgets. In addition, this 
will provide decision-makers with a strong knowledge 
base to be able to identify and focus on the most es-
sential issues.

The arid lands RS-GIS research should be giv-
en a high research priority, especially given that more 
than 2 billion people depend on services provided by 
arid lands ecosystems. A combination of the field-based 
measurements and geo-spatial approaches reviewed 
have the potential to help improve carbon estimation 
to reduce emissions resulting from deforestation and 
forest degradation, and to design incentive programs 
in arid land regions. Therefore, it can be applied to en-
hance the decision-making process on sustainable 
monitoring and management of carbon sequestration 
like afforestation, reforestation, and forest conservation 
projects.

Figure 7: Studies on estimating AGB using RS in arid/semiarid ecosystems. (Salem Issa et al., 2020a).
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1.4

Structure of 
the Book

• Chapter 2 illustrates the results of developing 
date palm biomass allometric equations and calculat-
ing the carbon stock both, in date palms and their soils. 

Subsections 2.3., 2.4., and 2.5. focus on calculating 
the biomass of date palm at different biomass com-
ponents, 

while Subsection 2.6. focuses on estimating the car-
bon stock in date palm at different age-stages. 

• Chapter 3 presents mapping & counting of 
date palm trees in Abu Dhabi Emirate using satellite 
imageries.

Subsections 3.2. and 3.3. focus on the mapping of 
LULC and vegetated areas of Abu Dhabi using the 
moderate resolution of Landsat-8 OLI images 

Subsections 3.4. focus on mapping of the young, 
medium, and mature date palms in Abu Dhabi using 
sub-meter world view-2 images. 

Subsections 3.5. focus on assessing the accuracy 
of the produced maps and counting the date palms 
of Abu Dhabi at different age stages using a remote 
sensing approach. 

• Chapter 4 displays the results of conducting a 
regression analysis between remote sensing vari-
ables (single bands and vegetation indices) with 
54 field plots covering different age stages of date 
palms in the emirate of Abu Dhabi.

Subsection 4.4.1. and 4.4.2.  presents the final RS-
based models and their validation to estimate bio-
mass and carbons stock in mature (> 10 years) and 
non-mature date palms (≤ 10 years). The chapter ends 
up with an assessment map of the carbon stock by 
date palms of Abu Dhabi.

• Chapter 5 discusses some critical issues 
which have emerged during the course of this study, 
while 

• Chapter 6 concludes the whole learned les-
sons and recommendations for this book. 
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2.1.

Overview

Afforestation projects can be used 

to earn carbon credits and re-

duce the carbon footprint. This type of sup-

portive efforts has a growing interest among 

policymakers and governments (Baral & Guha, 

2004). Therefore, estimation of CS in forests 

and trees is an important measure towards 

assessing mitigation effects on global change 

(Ebuy et al., 2011). Many destructive techniques 

(felling or harvesting) exist to directly esti-

mate CS (Gibbs et al., 2007). Although these 

techniques provide the most accurate meas-

ure of biomass, they ultimately rely on ground 

measurements and can cause severe destruc-

tion to the forests as well as a risk of environ-

mental deterioration (Khalid & Hamid, 2017; 

Maulana et al., 2016). In addition, such meth-

ods are tedious and time consuming (Ebuy et 

al., 2011), hence they cannot be used routinely.

Therefore, developing biomass equations (al-
lometry) that rely on non-destructive measurements, 
is very essential in estimating biomass. Subsequently, 
allometric equations have been developed and used 
to estimate tree biomass and CS from dendrometric 
measures, such as tree diameters and height (Ebuy et 
al., 2011; Picard et al., 2012). Notwithstanding, the num-
ber of trees destructively sampled to build allometric 
equations is not constant and differs from one study to 
another.  Currently, there is no consensus on that num-

ber, as this is often dependent on resource availability 
and permission to harvest trees (Yuen et al., 2016). For 
example, Russell (1983), and Moran and Grace (1996) 
used 15 and 14 trees, while Brown et al. (1995) and 
Khalid et al. (1999a) used only 8 and 10 trees, respec-
tively to build their allometric equations. 

Different quantitative variables were considered 
when building oil palm biomass allometric equations 
(Korom & Mastuura, 2016) (Appendix 1).  Henson and 
Chang (2003) used age as a predictor to estimate 
the standing biomass of oil palm in tons per hectare. 
Others used structural variables such as total height 
and trunk height (Dewi et al., 2009; Khalid et al., 1999a; 
Thenkabail et al., 2004), while Corley et al. (1971) used 
DBH, number of fronds, leaf area, rachis and petiole 
length, rachis and petiole cross-sectional area at in-
tervals,  and volume of petiole sections in their pioneer 
study to estimate the average yield of oil palms. 

More recently, allometric equations have been 
used, coupled with RS and field-based structural var-
iables measurements (Fonton et al., 2017; Salem Issa 
et al., 2019). Furthermore, Cheng et al. (2014) recom-
mended to develop more equations with different field 
structural variables that can be linked to RS predictors. 
Likewise, Jucker et al. (2017) suggested in their review 
of allometric equations to develop a new generation of 
allometric equations that estimate biomass based on 
attributes which can be remotely sensed.

Most biomass equations, whether species-spe-
cific or multispecies, have been developed for tropical 
rainforest ecosystems because of their relevance to 
the global carbon cycle (Basuki et al., 2009; Brown, 
1997; Chave et al., 2005; Cole & Ewel, 2006; Makinde 
et al., 2017). A few plant species biomass assessment 
equations are available for desert ecosystems. None-
theless, none of these were used to fit one of the most 
important fruit crops in arid regions, Phoenix dactylifera 
L., date palm (DP). More than 90% of the UAE territory 
is covered by desert ecosystems representing more 
than two-thirds of the country's land area. DP species 
are a good alternative for CS in such arid ecosystems. 
To estimate DP biomass and its carbon content, it is 
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necessary to quantify the biomass in all palm compo-
nents. Moreover, it would be more accurate to include 
both the AGB and BGB in estimating the CS, as both 
are available for recycling in the ecosystem at replant-
ing (Khalid et al., 1999b).

 Specifically, Chapter 2 aims at: 

1. Identifying the most relevant structural field var-
iables for the estimation of DP biomass; 

2. Developing specific allometric biomass equa-
tions that can be correlated with RS variables; 

3. Estimating CS in date palms; and 

4. Assessing the potential of DP species to im-
prove soil CS in such desert ecosystems.

2.2.

Phoenix
dactylifera L.
Date Palm

Date palms (Phoenix dactylifera L.) are 
resilient, productive over long terms, 

and possess multipurpose economic and envi-
ronmental advantages (Figure 8). Moreover, date 
palms have been considered an important crop 
and part of the farming systems in arid and sem-
iarid regions, especially in the oases and in the 
forms of small farm units or as large-scale trees 
(FAO, 1982). Date palms are considered pre-
cious, and have strong religious, traditional and 
nutritional significance (Shahin & Salem 2014). 

In the Arabian gulf states, date palms are heavily 

planted and maintained, particularly in the UAE, using 

abundant desalinated water and can thus be consid-

ered as a good alternative for carbon sequestration in 

such arid ecosystems. The UAE’s economy has pros-

pered since the discovery of oil, and the country wit-

nessed an unprecedented pace of growth sup-

ported by revenues from oil. The government 

invested heavily in planting and maintaining 

green areas, including farms many of which 

are date palm trees. During the past dec-

ades, the UAE date production increased, as 

an outcome of increased demand as the 

population swelled (AOAD, 2008).
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The date palm in Arab countries, in general, has 
been an integral part of the people’s culture and tradi-
tion. However, the number of the date palm, produc-
tion, and consumption vary from one country to another 
due to varying ecological conditions (El-Juhany, 2010). 
The world’s highest production and consumption of 
dates is found in the Arabian Peninsula countries, such 
as UAE (Zohary & Hopf, 1993). According to Food and 
Agriculture Statistics Database (FAOSTAT, 2013), the 
total world number of date palms is about 120 million 
trees, distributed in 30 countries and producing nearly 
7.5 million tons of fruit per year. Over two-thirds of this 
amount is found in the Arab countries; three of the top 
10 dates producers worldwide are in the Arabian Pen-
insula, namely: Saudi Arabia, UAE, and Oman (Kader 
& Hussein, 2009; AOAD, 2008). It is estimated that 

the UAE has the largest number of date palms for any 
single country in the world with a minimum of 200 cul-
tivars, 68 of which are commercially considered to be 
the most important (El-Juhany, 2010).

Arid lands in particular, have received less at-
tention in recent decades despite their importance to 
society and their exceptional vulnerability to climate 
change. They provide ecosystem services to more 
than two billion people, including significant crop pro-
duction and forage for wildlife and domestic livestock 
(Bestelmeyer et al., 2015). While arid lands are sparsely 
vegetated with low annual productivity, they have been 
identified as an important player in the global trends 
and variability in atmospheric CO2 concentrations (Ahl-
ström et al., 2015; Biederman et al., 2017; Humphrey 

Figure 8: Multipurpose advantages of date palms. The present book is focused on the ecological advantages of date palm by 
assessing and quantifying the carbon stock by date palm trees.
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et al., 2018; Poulter et al., 2014). Although biomass 
per unit area in arid and semiarid regions is normally 
low, their large extent gives them a significant role as 
a carbon pool for the supply of essential ecosystem 
services (Zandler et al., 2015). 

Monitoring the spatiotemporal dynamics of arid 
lands ecosystem structure and function is, therefore, 
a high research priority. Satellite RS particularly, has 
been instrumental in exposing the role of arid lands 
within the context of global carbon cycling and the 
broader Earth system (Humphrey et al., 2018; Poulter 
et al., 2014). Yet, none of the plant biomass assess-
ment measurements and its capacity of storing and 
sequestering carbon, were conducted for the most 
important fruit crops in arid regions, Phoenix dactylif-
era, date palm.

 In UAE, where more than two-thirds of its land 
area is covered by desert ecosystems, date palm 
species is a good alternative for CS in such ecosys-
tems. Date palm requires minimum water supply and 
tolerate harsh growth conditions such as high tem-
peratures, drought, and high levels of salinity. In fact, 
it is the most salt tolerant plant of all fruit crops (Al-
hammadi & Kurup, 2012; El-Juhany, 2010; Zohary and 
Hopf, 2000). Some palm species are considered key-
stone and provide multiple ecosystem services, such 
as CS (van der Hoek et al., 2019).

The amount of carbon that can be sequestered 
in palms is relatively high compared to some other 
plant species. In their study of the relationship be-
tween land use and CS in northeastern Brazil, Carlos 
et al. (2015) found that land planted with palms pro-
vided 40 t. C ha-1 while lands used for pasture and 
agriculture provided only 8 t. C ha-1 and 5 t. C ha-1, 
respectively. In another study in Northeast India, Sin-
gh et al. (2018) recorded considerably higher amounts 
of carbon in oil palm trees than in shifting cultivation 
fallows. They concluded that a 10 years old oil palm 
plantation could sequester up to 3.7 t. C ha−1 year−1. 
Hence, palms generate economic benefit and con-
tribute to carbon storage in a more sustainable way 
especially when planted in areas of low productivity or 
on degraded lands.

© Shutterstock

67A case study from the Emirate of Abu Dhabi, UAE.



68 Date Palm and Carbon Footprint

2.3.
Structural 
Field 
Variables of 
Date Palm 

A number of DP were selected to 

measure AGB and BGB in or-

der to build specific allometric equations 

and calculate the CS in both biomass and 

soil for DP trees in the study area. Age is one 

of the most important factors that influence 

the biomass of the palm and its structur-

al measurements (Sunaryathy et al., 2015).

 A substantial amount of research has been 
undertaken and published on the estimation of oil 
palm biomass at various ages (Husin et al., 1987; 
Kamarudzaman et al., 1995; Khalid et al., 1999a; Rees 
& Tinker, 1963). In the current study, a similar approach 
has been adopted to estimate DP’ biomass at three 
different age stages: 

• Age stage One (young) for trees younger than 
5 years; 

• Age stage Two (medium) for trees between 5 
and 10 years; and

• Age stage Three (mature) for trees exceeding 10 
years of age.

Accordingly, five DP were selected, prepared 
and uprooted to represent each age stage. Another in-
fluencer factor in DP biomass storing is variety. Indeed, 
DP in the study area differ in their cultivars (varieties) 
with different palm growth rates as well. Therefore, 
field samples were selected to represent the different 
varieties as well as the three different age stages in the 
study area including Fardh, Bumaan, Khunaizi, Khlalas, 
Baghel, Jabri, Shahem, Jash Ramli, and Neghal (see 
Appendix 4).

A fieldwork campaign was conducted during 
the fourth week of April 2018 where five DP were up-
rooted for each age stage (total of 15 palms). Each 
sampled palm was partitioned into three parts: crown, 
trunk and roots (Khalid et al., 1999a). The term biomass, 
in this research, refers to the value of dry weight un-
less indicated otherwise. Although some researchers 
prefer to use the fresh weight instead of dry weight for 
building their equations (Dewi et al., 2009; Khalid et 
al., 1999a) (Appendix 1). Hence, AGB is calculated as 
the sum of the crown and trunk weight while BGB is 
calculated as the weight of the root system. A large 
commercial scale balance was used to get the fresh 
weight of crown, trunk and roots in (Kg). From each part 
of the uprooted palms, three samples were collected 
(3 crown samples, 3 trunk samples and 3 root sam-
ples), (Figure 9). 

 Structural variables of uprooted DP including total 
palm height, trunk height, diameter breast height (DBH), 
crown diameter (CD), crown area (CA) and number of 
fronds (#Frond), were measured and later used in the 
regression analysis to build specific biomass allometric 
equations of date palm (Figure 10). Before uprooting the 
palm, the following variables were measured: 

i. DBH in cm by measuring the circumferences of 
the trunk at 1.3 m height and dividing by the number 
π. For small palms, with no developed trunk, the di-
ameter was measured at the base of the palm,

ii. Number of palm fronds (#Frond), 

iii. CD in meter, and (iv) CA in square meter was cal-
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Figure 9: Uprooting, partitioning, and weighing date palms. (Salem Issa et al., 2018, 2020b).

 A) Uprooting 

B) Partioning

C) Weighing



culated using the sphere equation (CA = π CD2/4), 
assuming a rounded palm crown. After uprooting 
the palm, the following variables were measured: 

a. Palm height (H) in meter, 

b. Palm trunk height (Ht) in meter, and 

c. Crown depth (Δheight), defined as the differ-
ence between total and trunk heights in meter.

A total of 120 biomass samples were collected 
during the fieldwork: (15 Crown + 10 Trunk + 15 Root) x 
3 replicates. Only 10 x 3 trunk samples were collect-
ed due to the absence of developed trunk in young 
palms. Four soil samples were collected from under-
neath each palm canopy, referred to as “In”. A total 
of 60 soil samples: 15 palms x 4 replicates were col-
lected during the campaign. More soil samples were 
collected away from the palms’ canopy, referred to as 
“Out”, from two DP farms: [2 farms x 4 replicates], for 

comparison and quantification of the effect of DP con-
tribution to soil carbon sequestration. 

Immediately after reaching the UAEU/ Biology 

department’s Labs, the fresh weights of all samples 

were measured. Then, samples were air dried and 

transferred to paper bags to be ready for oven drying 

at 80℃ for 72-96 hours to measure the dry weight  (Al-

len et al., 1974; Corley et al., 1971; Khalid et al., 1999a). 

Samples were prepared and grinded to calculate the 

biomass components’ parameters using the formula 

listed in Table 2. 

Samples were weighted to get the percentage 

of dry weight to original fresh weight in each sample 

(dry to fresh factor=DF) (Figure 11). Finally, samples were 

combusted for 4 hours at 550℃  (Allen et al., 1974)) to 

calculate organic matter (OM) and organic carbon (OC) 

as per the formula in Table 3. 

Table 2: Calculation of different date palms biomass components.

Parameter Formula

Dry Weight of each palm part
Crown Dry Weight (kg) = Crown Fresh Weight × Crown DF*
Trunk Dry Weight (kg) = Trunk Fresh Weight × Trunk DF
Root Dry Weight (kg)= Root Fresh Weight × Root DF 

Percentage of BGB
(Root system) from the AGB**

BGB:AGB ratio = BGB/AGB × 100

AGB weight in each palm AGB (kg) = Crown Dry Weight + Trunk Dry Weight

Total Biomass of each palm Total Biomass (kg) = AGB Weight + Root biomass Weight (BGB)

*DF is dry to fresh factor
** The ratio of each biomass component (crown, trunk, and roots) to the total biomass were calculated as well.
** The ratio of each biomass component (crown, trunk, and roots) to the total biomass were calculated as well.

Soil samples were first air dried and prepared 
for further processing (Allen et al., 1974). They were then 
placed in crucibles and oven-dried at 105℃ for 72 hours. 

The different soil samples’ parameters were calculated 
using formulae listed in Table 4 following the approach 
described in  (Ksiksi, 2012; Lemenih & Itanna, 2004).
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Table 3: Calculation of OM and OC of the collected samples.

Item Formula

The percentage of OM to dry weight in each sample %OMD* = (1- Combustion Weight 550 /Dry Weight 80) × 100

The OM Weight for palm parts in each palm
Crown OM Weight (kg) = Crown Dry Weight × % Crown OMD
Trunk OM Weight (kg)= Trunk Dry Weight × % Trunk OMD
Root OM Weight (kg) = Root Dry Weight × % Root OMD

The OC weight palm parts in each palm**
Crown OC Weight (kg) = Crown OM Weight × 0.58
Trunk OC Weight (kg) = Trunk OM Weight × 0.58
Root OC Weight (kg) = Root OM Weight × 0.58

The OC in AGB for each palm OC in AGB (kg) = Crown OC Weight + Trunk OC Weight 

Total OC in each palm Total OC (kg) = OC in AGB + OC in Root biomass 

* OMD is OM to dry factor                          ** OC is equal OM multiply by 0.58

Table 4: Formulae used to calculate the different soil parameters.

Item Formula

% Moisture content = (Initial Weight–Dry Weight 105)/Initial Weight × 100

Bulk density (g/cm3) = dried-oven Weight (g)/ Total volume of the sample

% SOM* = (Dry Weight 105 – Loss of Combustion)/ Dry Weight 105  × 100

% OC** = OM x 0.58 

Soil carbon (g/cm2)*** = Z x BD × C × 10

Soil carbon in Kg/palm = (Soil C. (g/m2) × CA) / 1000 

* Combustion was performed for 4 hours at 550 to estimate % SOM
**% OC is estimated as 0.58 of the calculated OM
*** Where Z = thickness of each sample depth (10 cm), BD = bulk density (1.7 g/m3) of each sample depth and C is the carbon   
      concentration (g.C/Kg soil) of each sample depth. Results are reported in tons per hectare.

The total CS in and contributed by the DP is cal-
culated as the sum of CS in the DP biomass itself plus 
the CS in the soil underneath the palm as explained 
and formulated as per equation 1 below:

Total CS = Biomass C + Soil C    Equation (1)

The correlation coefficients between fresh 
and dry weight for the palm’s crown trunk and root 

components were estimated at 0.99, 0.97 
and 0.97, respectively; while the correlation 
between the total fresh weight and the total 
dry weight gave a value of 0.99. Further-
more, the dry to fresh ratio or factor (DF), 
for the BGB was estimated at 0.45, while 
that of the AGB was calculated at 0.40 
(Table 5). 
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Figure 10: Structural field variables of date palm. ( AGB: Aboveground Biomass, BGB: 
Belowground Biomass, and DBH: Diameter at Breast Height )
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Table 5: Average of dry to fresh weight factor for each DP component.  

All Ages Crown DF Trunk DF Root DF Total DF AGB DF

(Mean ± SE) (0.41 ± 0.01) (0.37 ± 0.02) (0.45 ± 0.02) (0.42 ± 0.01) (0.4 ± 0.02)

*DF is dry to fresh factor calculated as a ratio between dry to fresh weights. 
**AGB includes crown plus trunk only.
*** SE is the standard error.

As for the non-structural variables, age proved 
to be an important factor influencing the storing of 
DP biomass (P < 0.05). The significant correlation 

between age of DP and its total biomass/ AGB re-
mains positively strong for either fresh or dry weights 
(Table 6). 

Table 6: Field variables of DP used to assess allometric equations.

Field Variables Young (< 5 year)
(Mean ± SE)

Medium (5-10 year)
(Mean ± SE)

Mature (> 10 year)
(Mean ± SE)

DBH (cm) 33.87 ± 2.28 43.29 ± 7.45 51.57 ± 5.1

H (m) 4 ± 0.167 4.85 ± 0.206 8.38 ± 0.48

Ht (m) - 0.764 ± 0.196 3.21 ± 0.52

Δ height (m) 4 ± 0.17 4.086 ± 0.22 5.17 ± 0.36

CD (m) 3.09 ± 0.46 5.66 ± 0.25 7.2 ± 0.08

CA () 8.15 ± 2.57 25.36 ± 2.28 40.73 ± 0.86

# Fronds 29.8 ± 2.27 35 ± 5.17 61.6 ± 2.32

Weight of fresh component (Kg.palm-1)  

Crown 50.65 ± 5.43 171.08 ± 34.47 367.24 ± 78.56

Trunk - 74.18 ± 13.61 365.28 ± 30.65

Root 21.43 ± 6.39 187.36 ± 27.91 282.06 ± 25.25

Total weight 72.08 ± 11.19 432.62 ± 66.41 1014.58 ± 95.92

AG weight* 50.65 ± 5.43 245.26 ± 42.99 732.52 ± 91.38

Weight of dry component (Kg.palm-1) 

Crown 22.51 ± 3.06 65.17 ± 11.87 148.5 ± 35.85

Trunk - 29.53 ± 8.62 135.91 ± 19.62

Root 7.46 ± 1.88 87.61 ± 14.87 141.23 ± 13.59

Total 29.97 ± 4.17 182.3 ± 32.07 425.63 ± 45.6

AG weight* 22.51 ± 3.06 94.69 ± 18.45 284.41 ± 43.15

*Aboveground weight equals crown weight plus trunk weight of the palm.
**SE is the standard error.
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Figure 11: Lab works, preparing samples, grinding, weighing, and drying.

C) Weighing

A) Preparing Samples

B) Grinding

D) Drying
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2.4.
Ratios of 
Date Palm 
Biomass 
Components 
(Crown, 
Trunk, and 
Root)

Given that the correlation between 

fresh and dry weights of DP (0.99 

for both aboveground and total weights) was 

found to be very strong; dry weight was used in 

all subsequent calculations as well as for build-

ing the biomass allometric equations of DP. 

For young DP, with non-developed trunk, CB 

ranged between 17.2 Kg and 34.1Kg with a mean 

value of 22.5 Kg, contributing 75.1% of the to-

tal palm biomass. While the BGB contributed 

about 24.9% of that total biomass (Table 6). 

It is worth noting that in the case of young DP, 
the AGB consists of only the CB. The contribution of 
the crown and root to the total biomass increased 
with age hence, with trunk growth of the palm. The ra-
tio of CB to total biomass decreased to 35.75% and 
34.89% of the total biomass for medium and mature 
DP, respectively. While the root system’s contribu-
tion to the total biomass increased to 35.38% as the 
palms grew older (Table 7). 

The trunk contained 16.20% of the total bio-
mass in medium DP palms and 31.93% of the total 
biomass in mature DP. The mean % of TB in all palm 
age stages (with no trunk in young palm) approaches 
15.98% of the total biomass (Table 7).
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Table 7: DP component’s biomass calculated as a ratio of total or AGB. 

Component
To

Young DP% Medium DP% Mature DP% Mean%

CB Total 75.11 35.75 34.89 48.59

TB 
-

16.2 31.93
15.98

BGB 24.89 48.06 33.18
35.38

AGB 75.11 51.94 66.82
64.31

CB 
AGB

100 68.82 52.21
73.68

TB 
-

31.18 47.79
26.32

BGB 33.15 92.52 49.66
58.44

Where CB is crown biomass, TB is trunk biomass, BGB is below ground biomass, AGB is above ground biomass, and Total is 
total biomass.

The AGB alone contained most of the DP bio-
mass with an average of 75.11%, 51.94% and 66.82% 
for young, medium and mature DP, respectively. The 
crown was found to retain most of the AGB at all ages. 
It was noted that each component of the DP followed 
a different rate of biomass storing at each age stage. 
The BGB to AGB ratios changed considerably dur-
ing growth stages of the DP with values of 33.15%, 
92.52% and 49.66% for young, medium and mature 
DP, respectively.  The average mean percentage of 
BGB to AGB was 58.44% when averaged over all age 
stages. It increased to 71.1% when including DP with 
developed trunks from the medium and mature stag-
es only (Table 7).
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2.5.
Biomass
Allometric 
Equations of 
Date Palm

All statistical and graphical tests for 

the models were performed using 

SPSS and Excel software packages. First, cor-

relation coefficients between biomass in each 

DP part (crown, trunk and root) and all collected 

field variables were calculated. Linear, logarith-

mic, exponential, power and polynomial expres-

sions, were fitted in the regression analyses to 

identify the highest coefficient of determination 

(R2). Single-variable models are most frequent-

ly used in estimating the biomass as they are 

easy to apply compared to those with multiple 

variables (Cheng et al., 2014). In the current 

case, the linear and non-linear regression anal-

yses were run to develop single-variable mod-

els to predict the biomass.  Individual single 

field measurements were considered as the 

independent variables (i.e., H, Ht, CD, CA, etc.), 

while the predicted biomass (AGB) was the de-

pendent variable. Then, the associated R2 val-

ues for each model were calculated at P <0.05. 

2.5.1. Crown Biomass (CB)

All field variables showed significant correlation 
with CB except DBH and ΔHeight (Table 8). The four 
field variables that gave the highest correlation with 
CB were: Age, CA, CD and H. After applying different 
types of relationships (linear, polynomial, power, loga-
rithmic, and exponential equations), it was found that 
the power equation (2) with ‘Age’ as independent vari-
able had the highest R² (equal to 0.857) (see Table 8).

CB = 6.4575 × Age1.1019 Equation (2)

However, age is a non-structural variable and 
cannot be measured directly in the field. It has to be 
obtained from farmers or from the farm’s records. 
Furthermore, it was intended to identify potential field 
structural variables to develop specific DP allometric 
equations that would be used in a RS based CS as-
sessment model of DP in the region. Therefore, the 
use of other well-correlated structural variables such 
as CA to estimate CB was very appropriate. Equation 
(3) applying an exponential expression with CA as in-
dependent variable and depicted graphically in Figure 
12, was found to have the best R2 (equal to 0.8354) 
(see Table 8).

CB = 14.034 × e0.0554 x CA (CA ≠ 0)                 Equation  (3)
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Figure 12: Allometric equation for 
estimating CB of DP as function of CA 
(Salem Issa et al., 2020b)the authors 
demonstrated that combinations of 
visible and short wave single bands (Red, 
SWIR1, SWIR2. 

Table 8: Best prediction equations for crown biomass estimation of DP.

Regression Equations Variable R2 P value

CB= 6.4575 × Age1.1019 Age 0.857*** 0.00002

CB= 0.2506 × DBH1.4548 DBH 0.3054* 0.229

CB= 1.0874 × H2.3225 Height 0.8114*** 0.00002

CB= 2.4525 Ht2 + 29.201 Ht + 30.12 Ht 0.7602** 0.00003

CB= 0.3013 × Δ Height3.5402 Δ Height 0.4466* 0.02

CB= 5.8364 × e0.4231 x CD CD 0.8143*** 0.002

CB= 14.034 × e0.0554 x CA CA 0.8354*** 0.001

CB= 0.1113×#Frond2 -6.4461×#Frond +125.63 #Fronds 0.7181** 0.0003

*weakly significant 
**moderately significant 
***strongly significant
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Figure 12: Allometric equation for estimating CB 
of DP as function of CA (Salem Issa et al., 2020b).
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2.5.2. Trunk Biomass (TB)

All field variables were significantly correlated 

with TB except DBH and ΔHeight (Table 9). The three 

field variables that gave the highest correlation with 

TB were: Ht, H, and CA (Table 9). It was found that the 

power equation (4) using Ht as the independent varia-

ble, had the best R² (equal to 0.828) (see Table 9 and 

Figure 13). 

TB = 40.725 × Ht0.9719        Equation (4)

Table 9: Best prediction equations for trunk biomass estimation of DP.

Regression Equations Variable R2 P value

TB= 0.5808 × Age1.9271 Age 0.753 0.002

TB= 0.0816 × DBH1.7212 DBH 0.3967 0.197

TB= 0.2879 × H2.8666 Height 0.8017 0.001

TB= 40.725 × Ht0.9719 Ht 0.8276 0.0004

TB= 0.4644 × ΔHeight 3.1733 ΔHeight 0.3252 0.176

TB= 0.1286 × e0.9487 x CD CD 0.7556 0.008

TB= 2.356 ×0.0966 x CA CA 0.7566 0.008

TB= 0.008 × #Frond2.3274 #Fronds 0.7403 0.008

2.5.3. Aboveground Biomass 

AGB is the resulting sum of crown biomass (CB) 

and trunk biomass (TB). It can be estimated from CA 

(Equation 3) and Ht (Equation 4) that were found to be 

the most significant field structural variables for pre-

dicting crown and trunk biomass, respectively. Finally, 

the resulting allometric equation to estimate AGB of 

DPs is given in equation (5) below.

AGB = CB + TB       Equation (5)

Where: CB = 14.034e0.0554 x CA (with CA ≠ 0), and TB = 40.725 x 

Ht0.9719. 
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2.6.
Carbon 
Stock in Date 
Palm Trees 
at Different 
Age-Stages 

Overall trunk of DP had a higher or-
ganic matter (OM) content of its 

dry weight than crowns and roots with aver-
ages of 93.3%, 92.43% and 88.39%, respec-
tively (Table 10). The average percent OM was 
91.38% for the whole DP (i.e. sum of the 3 com-
ponents) and 92.87% for AGB. The same was 
noted about the organic carbon (OC) content 
to dry weight of DP. The trunk had higher OC 
content than crown and roots (54.12%, 53.61% 
and 51.27%, respectively). The percentage 
of carbon content in the root system of DP 
(BGB) was found to be 51.27%, which is slight-

ly lower than the carbon content in the AGB.

The average percentage of OC for whole DP 
was 53% of the AGB. The total OM and OC stocks 
in the various DP components expressed per palm 
are shown in Table 10. The whole DP contains about 
15.88 Kg of OC for young DP with increasing values of 
a maximum of 96.62 Kg and 225.58 Kg for medium 
and mature DP, respectively. While the AGB contained 
averages of 11.93 Kg, 50.19 Kg and 150.74 Kg of OC for 
young, medium and mature DP, respectively. 
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Figure 14: Prediction equation of soil 
organic carbon as function of CA 
(Salem Issa et al., 2020b)the authors 
demonstrated that combinations of 
visible and short wave single bands (Red, 
SWIR1, SWIR2.
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Table 10: OM and OC (Kg. palm-1) in DP components at different age stages.

DP Component Age Stage Dry Weight OM OC

Crown
 

Young 22.51

92.43%

20.81

53.61%

12.07

Medium 65.17 60.24 34.94

Mature 148.50 137.26 79.61

Trunk
 

Young -

93.31%

-

54.12%

-

Medium 29.53 27.55 15.98

Mature 135.91 126.82 73.55

Root
 

Young 7.46
88.39%
 

6.59
51.27%
 

3.82

Medium 87.61 77.44 44.92

Mature 141.23 124.83 72.41

Total Biomass
 

Young 29.97
91.38%
 

27.39

53.00%

15.88

Medium 182.30 166.59 96.62

Mature 425.63 388.94 225.58

AGB
 

Young 22.51
92.87%
 

20.91
 53.87%
 

12.13

Medium 94.69 87.94 51.01

Mature 284.41 264.13 153.21

The average SOM content of samples tak-

en from underneath the DP canopy (labeled “In”) in-

creased with age, registering 4.28%, 5.02% and 

5.06% for young, medium and mature DP, respective-

ly, with an overall mean of 4.79% (Table 11). On the oth-

er hand, the average SOM content of samples taken 
away from the DP canopy (labeled “Out”) registered 
3.0%. This percent represents only about two-third of 
that recorded from samples taken beneath (“In”) the 
date palms (Table 11).

Table 11: Percent SOM and SOC for different canopy positions.

Underneath/ Far Away DP Soil Organic Matter (%) Soil Organic Carbon (%)

In Out In Out

Qattara Farm 5.06 4.1 2.6 2.38

Masakin Farm 4.28 1.9 2.48 1.1

Average 4.67 3.0 2.54 1.74

Percent SOC was transformed into bulk tons of 
SOC per hectare (Table 12), The average bulk density 
ranged from 0.74 to 1.24 g/cm3 with a mean of 0.88 g/
cm3. An estimated total of about 22.26 tons of SOC 
was added per hectare in the areas dominated by DP. 
Variations between different age stages were also de-
tected. The average SOC at young, medium and ma-
ture DP were 20.29, 23.66 and 22.83 tons per hectare, 
respectively. At the individual palm level, the average 
SOC was 18.09 Kg.palm-1, 62.59 Kg.palm-1 , and 92.91 

Kg.palm-1 for young, medium and mature DP, respec-
tively, with an overall average of 57.87 Kg.palm-1 (Ta-
ble 12). There was a strong correlation between 
SOC (Kg.palm-1) and palm CA (m2) with R² equal 
0.9523 (Figure 14). Thus, CA can be used as a 
suitable predictor to estimate SOC using the 
power regression given in Equation (6).

SOC (Kg.palm-1) = 1.5474 x CA1.1144  Equation (6)
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Table 12: SOM and SOC at 10 cm depth under DP at three different age stages.

DP Age Stage Age (year) CA (m2)
SOM
(%)

SOC
(%)

SOC 
(g/m2)

SOC (Kg.palm-1) SOC (ton.ha-1)

Young
2.5 3.98 3.08 1.79 1731.58 6.88 17.32

2.5 4.52 4.48 2.6 1932.42 8.74 19.32

3 7.55 3.75 2.18 2126.36 16.05 21.26

3 6.61 3.48 2.02 1740.43 11.5 17.4

4 18.1 6.59 3.82 2613.07 47.29 26.13

Mean 8.152 4.276 2.482 2028.772 18.092 20.286

Medium
5 20.43 3.99 2.31 2003.73 40.93 20.04

7 28.27 4.58 2.65 2359.16 66.7 23.59

8 25.52 4.95 2.87 2430.97 62.03 24.31

9 32.17 8.36 4.85 3446.96 110.89 34.47

10 20.43 3.22 1.87 1587.22 32.42 15.87

Mean 25.364 5.02 2.91 2365.608 62.594 23.656

Mature
11 40.72 4.06 2.35 2277.49 92.73 22.77

14 41.85 7.27 4.22 3151.01 131.88 31.51

16 37.39 5.74 3.33 2392.35 89.46 23.92

18 41.85 3.79 2.2 1571.99 65.79 15.72

20 41.85 4.46 2.59 2023.26 84.68 20.23

Mean 40.732 5.064 2.938 2283.22 92.908 22.83

Averages 4.79 2.78 2225.87 57.87 22.26
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2.7.
Summary

In Chapter 2, specific allometric bio-

mass equations were developed that 

can be integrated into a RS-based model for 

assessing carbon sequestered in DP. Assess-

ing the potential of DP to improve soil carbon 

sequestration was another objective. The aver-

age amounts of DP biomass, organic matter, or-

ganic carbon, and soil organic carbon at differ-

ent age stages were presented on Appendix 5. 

Here and based on field and lab work, relevant 

structural variables were identified and used 

in the development of allometric equations. 

Results showed that the crown area (CA) best 

estimated both crown biomass (CB) and soil organic 

carbon (SOC). Likewise, the trunk height (Ht) was the 

best estimator of trunk biomass (TB). Using these var-

iables, allometric equations were developed for date 

palms at different age stages and were used to esti-

mate CB, TB and SOC with coefficients of determina-

tion (R2) of: 0.884, 0.835 and 0.952, respectively. Fur-

thermore, the average ratios of below ground biomass 

(BGB) to above ground biomass (AGB) varied with palm 

maturity stages averaging 0.332, 0.925 and 0.496 for 

young, medium and mature palms, respectively. 

Moreover, the results demonstrated that the 

amounts of organic carbon (OC) stored in date palms 

were considerable with values of: 15.88 Kg. palm-1 for 

young DP, 96.62 Kg. palm-1 for medium DP, and 225.58 

Kg. palm-1 for mature DP. Substantially higher amounts 

of SOC were measured compared to other local plants 

with values of: 18.092 Kg. palm-1, 62.594 Kg. palm-1, and 

92.908 Kg. palm-1 under young, medium and mature 

DP palms, respectively. 

The main achievement was the development of 

new and unprecedented allometric equations for DP 

species in arid land. Such equations allow the devel-

opment and calibration of a RS-based model for es-

timating biomass and CS of date palms in the region 

with high accuracy.
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Item

Average amount (Kg palm-1)

Young 
(< 5 year

Medium
(5 – 10 years)

Mature 
(>10 years)

Crown Biomass (CB) 22.51 65.17 148.5

Trunk Biomass (TB) 0 29.53 135.91

AGB 22.51 94.69 284.41

BGB 7.46 87.61 141.23

Total Biomass 29.97 182.3 425.63

Organic Matter (OM) 27.39 166.56 388.94

Organic Carbon (OC) 15.88 96.62 225.58

SOC 18.09 62.59 92.91

Total Carbon Stock (CS) 33.97 159.21 318.49

Above ground biomass (BGB)
CROWN BIOMASS=14.034 × 1.057CA

TRUNK BIOMASS = 40.725 × Ht0.9719

R2=0.8354 ,p - value=6×10−4

AGB=CROWN BIOMASS + TRUNK BIOMASS

Below ground biomass (BGB)
is calculated a ratio with AGB:

BGB for Young date  palm =  0.332

BGB for Medium date palm = 0.925 

BGB for Mature date palm  =  0.496

• Carbon is 53.87% of AGB

• Soil Carbon (SOC) is 22.26 t/ha

Summary of statistics on palm biomass and sequestered carbon

Ht
is Trunk Height

CA
is Crown Area

Infographic 9: Summary of statistics, equations, and ratios for estimating 
aboveground biomass, belowground biomass, and carbon stock in date palm trees.
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Item
% from total BIOMASS

Young (< 5 year) Medium (5 – 10 years) Mature  (>10 years)

Crown 75.11 35.75 34.89

Trunk 0 16.2 31.93

AGB 75.11 51.95 66.82

BGB (Roots) 24.89 48.06 33.18

Item
% from AGB

Young (< 5 year) Medium (5 – 10 years) Mature  (>10 years)

Crown 100    68.82 52.21

Trunk 0 31.18 47.79

BGB: AGB Ratio

BGB (Roots) 0.33 0.93 0.5

Portioning

AGB

Portioning

AGB

BGB
(Roots)

BGB
(Roots)

Crown 35%

Trunk 32%

Roots 33%

Trunk 32%

Crown 36%

Roots 33%
Roots 25%

Crown 35%Trunk 16%Crown 75%

Roots 48%

Infographic 10: 
Summary of statistics, 
equations, and ratios for 
estimating aboveground 
biomass, belowground 
biomass, and carbon 
stock in date palm trees.
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3.1.
Overview

In this Chapter, a hybrid classification 

method (HCM) was developed to pro-

duce a classified map of the study area compris-

ing seven land use/land cover (LULC) classes. A 

GIS-based semi-automatic approach, benefit-

ing from the researcher’s prior knowledge of the 

study area, was then implemented to group the 

classes and to produce a bitmap (binary mask) 

of only two types: vegetation and non-vege-

tation (the vegetation bitmap). Finally, a set of 

high-resolution WorldView-2 (WV-2) imagery 

was used to classify and map date palm trees 

at different age stages, within the vegetation 

bitmap, to create an accurate and reliable DP 

map. The output product will be used as an input 

to the built RS-based biomass model to assess 

CS in DP trees in the study area (see Chapter 4). 

Figure 15 demonstrates the pre-process-
ing and processing of RS data in details.  First, each 
pan-sharpened scene of Landsat-8 OLI was classified 
using a the HCM (supervised and unsupervised clas-
sification) to create LULC maps (for RS data used, see 
appendix 6A). 

Next, the maps were recoded (reclassified) to 
create a bitmap comprising only two classes: vegeta-
tion and non-vegetation. The HCM was applied to the 
areas covered by the vegetation class in order to de-
lineate the date palms and create a bitmap containing 
date palms and non-date palms classes (DP and non-
DP). However, at this stage of the classification, only 

mature DP trees were depicted due to the limitations 
of Landsat-8 OLI to differentiate soil background from 
the non-mature DP trees (less than 10 years) with aver-
age crown diameter less than 5 meters.

In order to map the other two age stages (me-
dium, and young), object-oriented classification (OOC) 
method was applied on the already produced vegeta-
tion bitmap. At this level, about 829 sub-meter world 
view -2 (WV-2) images were used covering only the 
vegetated areas (see Appendix 6B). The HIA classifi-
cation method was able to depict the three age stages 
of date palms: young, medium, and mature. 

To validate the interim and final maps, an ac-
curacy assessment procedure was implemented at 
different levels for the evaluation of the LULC maps, 
the vegetation bit-map, and the detailed DP maps. An 
error matrix was produced and helped determine the 
overall, user’s, and producer’s accuracies, in addition 
to the kappa coefficient. All processes were imple-
mented using ERDAS Imagine 2020 and ArcGIS 10.7.1 
software packages. 

For the purpose of tree crown detection and 
delineation, many algorithms were developed (Chep-
kochei, 2011; Hebbar et al., 2014; Lack & Bleisch, 2010; 
Rizvi et al., 2019; Sahay et al., 2017). However, results of 
tree detection and delineation can be affected by al-
gorithm characteristics. Indeed, different approaches 
may give different results despite working in the same 
environment. Thus, it is important to select the appro-
priate algorithm to get the suitable results. Moreover, 
for any algorithm to work properly, crowns should be, 
at least, detectable and segmented as an object in the 
image before classification. 
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Figure 15: The flowchart of methods for land use/land cover (LULC) classification and mapping of date palm trees.

0.5387

Landsat SOLi
images (covering

srudy area)

Stacking

Mosaicking
Subset

study area
Subesitted

lmages

Pan-
sharpning

+

+

Landsat SOLi
Panchromatic

resampling algorithm
NN

Six images

Developing
classification scheme

Reference maps
• personal knowledge

Recoding and
Masking (Veg.
and Non Veg.)

World View2
selection of images
covering vegetated

areas

NN
resampling algorithm

Training
Samples

Object-based
 Classification

(OBC)

Classified
DP at three
age stages

Cleaning up in GIS

Mapping
Mature

Date Palm

Mapping
Medium

Date Palm

Mapping
Young

Date Palm

•Spectral information and NDVI
•SFP with multi-Bayesian network classifier
•Threshold and Clump function
•Probability function
•Size function

World View2
Panchromatic

Vegetation
bit-map

Creating Veg. shp. file
to be used in Level 3

(Raster                Vector)

Accuracy
assessment

LULC
map

Accuracy
assessment

Accuracy
assessment

Unsupervised
classification

(k-mean)

Hybrid
Classification
Method (HCM)

Supervised
classification

(MXL)

Convert
(Raster        Vector)

Stacking

Pansharpning

Le
ve

l 3
Le

ve
l 2

Le
ve

l 1
Pr

e-
pr

oc
es

si
ng

Sp
at

ia
l

en
ha

nc
e-

m
en

t
M

os
ai

ck
in

g
st

ud
y 

ar
ea

C
la

ss
ifi

-
ca

tio
n

Pr
e-

pr
oc

es
si

ng
Sp

at
ia

l
en

ha
nc

e-
m

en
t

C
la

ss
ifi

-
ca

tio
n

G
IS

C
le

an
 - 

up

Fi
na

l 
M

ap
pi

ng
of

 D
at

e
 P

al
m

LU
LC

m
ap

Ex
tr

ac
tio

n
ve

ge
ta

te
d

Ar
ea

Ve
ct

or
-

iz
at

io
n

93A case study from the Emirate of Abu Dhabi, UAE.



Training areas of the classes that are to be ex-
tracted must be chosen very carefully for not to include 
any background pixels and non-targeted classes 
based on visual analysis and on previous knowledge 
of the area by the interpreter. By using the pan-sharp-
ened WV-2 images (spatial resolution 0.5 meter) (see 
Chapter 2, Subsection 2.3), DP crowns can be differen-
tiated from the background (soils, grasses, and weeds) 
and other shrubs and trees using colour, tone, texture, 
size and planting arrangement (Figure 16). In general, 
the steps followed could be divided to multi-levels: 

1. raster data analysis which includes identifying 
DP from other vegetation and classifying their age 
stages (mature, medium, and young) according to 
their crowns, and 

2.  vectorising, cleaning up the vector layers and 
creating the maps. 

Furthermore, a pixel-based classifier relying on 
spectral, textural and site information, is used in the 
raster analysis part (Figure 17b, and 17c). The second 
level of analysis was done on the vector data model by 
first vectorising the three raster outputs (mature, me-
dium, and young), smoothing the polygons, calculating 
the areas, and cleaning up the maps manually (Figures 
17d, 17e, and 17f).

Figure 16: A subset of pan-sharpened WV-2 image. Green, 
red, and NIR1 bands were used with a spatial resolution of 0.5 
meters. The image is displayed in false color. (A) The DP can be 
differentiated from bare soils and grass visually by using color, 
tone, and texture; and (B) The DP can be differentiated from 
other vegetation (grasses, trees, and shrubs) visually using the 
mentioned tools plus the planting arrangements and spacing.
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a) b) c)

d) e) f)

Figure 17: Separating age classes of date palm trees. The example is from Al Foah DP farm: (a) Original WV-2 
image (RGB:7,5,4); (b) SFP using Bayesian network; (c) Threshold and clump applied; (d) Mature palms layer; (e) 
Medium palms layer; and (f) Young palms layer (Salem Issa et al., 2020).
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3.2.
Land Use/
Land Cover 
Classification 
of the Emirate 
of Abu Dhabi

Anderson classification scheme 

(Level 1) was adopted, to classify the 

Landsat data (Al-Ahmadi & Hames, 2009; An-

derson, 1976; Rozenstein & Karnieli, 2011). Sev-

en LULC classes were used to represent: veg-

etation, urban, sand sheets, sand dunes, deep 

water and shadows, shallow water, and sabkhas.

The HCM approach was implemented: starting 
by performing unsupervised classification to minimize 
bias in the selection of training areas and seed sig-
natures; then, a set of spectral class signatures was 
created to be used as training data for the supervised 
classification phase (Bakr et al., 2010; Kuemmerle et 
al., 2006; Rozenstein & Karnieli, 2011). Each image 
was initially clustered into 80 classes with a maximum 

of 80 iterations (the optimum number of iteration for 
Landsat data), permitting the clustering process to 
stop naturally as it reaches the convergence threshold 
of 0.990 (Al-Shuwaihi, 2009; Kuemmerle et al., 2006; 
Mundia & Aniya, 2005; Yang & Lo, 2002). 

Next, all images were classified using the previ-
ously created signatures corresponding to the seven 
classes present in the study area. The signatures were 
collected by delineating polygons on the images to 
collect the training samples (total of 720 training sets). 
The signatures were assessed and evaluated by plot-
ting the mean signature values of each class against 
the Landsat-8 OLI bands. The maximum likelihood 
classifier (MXL) was used and the resulting classes 
were then merged and recoded to form the final seven 
LULC classes. The resulting LULC map was smoothed 
and cleaned up using a Majority Filter with a window 
size of (3x3). Then, certain class boundaries were 
manually adjusted using the Fill Tool module in ERDAS 
Imagine. This is achieved by filling the misclassified 
pixels with the right values. Finally, the thematic LULC 
map was created and the area of each of the seven 
classes was computed in hectare.

The evaluation of spectral signatures separabil-
ity (total of 740 training sets) is displayed in Figure 18 
where the Y-axis represents the mean signature value 
of each class (pixel or DN value) and the X-axis rep-
resents the Landsat-8 OLI bands. Shortwave infrared 
bands (SWIR1& SWIR2) had the best separability pow-
er of all Landsat 8 OLI bands.

Figure 19 displays the class distribution and Ta-
ble 13 shows their respective areas and percentages 
in the study area. Sand dunes formed about 70% of 
the study area with nearly 5 million hectares. Sab-
khas occupied 15.51%, while sand sheets, including 
gravel, made up 8.6% of the study area. Finally, Urban 
and Vegetation classes constituted only 0.49% with 
32,333 hectares and 0.6% with 40,102.6 hectares of 
the study area, respectively.

Table 13: The area and percentage of each class LULC of Abu Dhabi.

LULC Class Deep Water Shallow Water Urban Vegetation Sand Dunes Sand Sheets Sabkha

Area (ha) 9,677.7 11,847.2 40,102.6 32,333.3 4,957,180 572,665 1,032,170

(%) 0.15 0.18 0.6 0.49 74.48% 8.6 15.15
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Figure 18: Mean signature value of LULC classes vs. Landsat-8 bands.
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3.3.
Mapping 
Vegetation 
and Date 
Palm Using 
Landsat-8 
OLI Sensor

The Landsat-8 OLI images were first 

processed to produce a bitmap with 

two land cover classes: vegetated / non-veg-

etated (Al-Shuwaihi, 2009; Southworth et al., 

2002). To that end, the LULC map of Abu Dhabi 

was converted to a binary map by merging all 

non-vegetation classes: urban, sand sheets, 

sand dunes, deep water, shallow water, and 

sabkhas, into one class named non-vegetation. 

A “Recode” function was used in the process 
to create a vegetation bitmap having two values: 1 for 
vegetated area class and 0 for non-vegetated class. 
Vegetated areas (pixels) were extracted from the 
original images by masking the non-vegetated pixels 
using Subset/Mask functions in ERDAS Imagine. To 
separate the DP trees from other vegetation types, the 
HCM was run within the vegetated areas following the 

same procedure described above. The DP trees were 
mapped and their areas in hectare were computed; 
however, only the mature DP trees were depicted due 
to the limitations of Landsat-8 OLI to differentiate soil 
background from the non-mature DP trees. 

Consequently, the vegetation bitmap was trans-
formed and converted to vector format and exported 
to a vector shapefile using ArcGIS 10.7.1. The shapefile 
will then be used for the selection of the correspond-
ing WV-2 scenes that cover the vegetated areas pres-
ent in the study area. The OOC classification method 
is applied to classify the high-resolution WV-2 images 
for the separation and mapping of DP age classes and 
calculating their statistics.

All non-vegetated classes of the LULC map were 
merged to produce one non-vegetated class; where 
the vegetated class was given the value of One, while 
the non-Vegetated class was set to Zero (Figure 20).

Pure spectral signatures of DP were select-
ed from pixels representing DP planted in Abu Dhabi 
Emirate. They all were collected during intensive field 
visits to different locations of DP farms in the study 
area. These DP farms are different in their phenolog-
ical cycle (mature, medium, and young). Besides, they 
have different farming systems, management prac-
tices (irrigation and fertilizing) and healthy conditions 
(stressed/ not stressed). In order to separate and map 
DP from other vegetation types, the spectral signature 
values (minimum, maximum, and mean) of DP trees 
were analyzed. It was revealed that only mature DP 
had good separability and hence could be detected 
at this stage, using Landsat-8 OLI. This is due to the 
limitations of Landsat-8 OLI to differentiate soil back-
ground from the non-mature DP trees.

 The results are displayed in Figure 21; 
where the Y-axis represents the signature val-
ues (pixel or DN value) of DP (mature DP) while 
the X-axis represents the Landsat-8 OLI 
bands. It was noticed that the best discrim-
inatory bands of the Landsat-8 OLI for mature 
DP spectral separation are found in the 
Red-Red edge-IR boundaries. 
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Figure 20: Vegetation bitmap of Abu Dhabi.

Figure 21: Min., max., and mean signature value of date palm trees versus Landsat bands.
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Therefore, non-mature DP (medium and young) 

were not mapped, and only mapping of mature DP 

was performed using the Landsat-8 OLI imagery at 

this stage. The HCM was applied to the vegetation 

bitmap produced previously and, the same proce-

dure described above was implemented. Maps were 

created and their areas in hectare were computed 

(Figure 22).

The area (in hectare) of the DP trees was es-
timated at 20,893.5 ha, hence contributing to more 
than 64% of the vegetated areas in the emirate. Most 
of DP trees were found in AlAin (east of the emirate) 
and Liwa (south of the emirate). Note that these figures 
represent only the mature DP trees (> 10 years) of Abu 
Dhabi as Landsat-8 OLI couldn’t depict the non-ma-
ture DP (medium and young) of an average crown di-
ameter less than 5 meters due to mixed spectral sig-
nature with soil background and wider spacing.
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Figure 22: Abu Dhabi Emirate DP trees map (mature DP) using Landsat-8 OLI. It is shown that most 
of the DP trees are found in AlAin City (right box) and Liwa (left box).
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3.4.

Accurate 
Mapping of 
Date Palm 
at Different 
Age-Stages 
Using 
WorldView-2 
Sensor

At this level of the classification, the 829 WV-2 
scenes acquired in 2014 were used (for RS data used, 
see appendix 6B). The vegetated areas, in each of the 
829 scenes, were visually interpreted and subset to 
run the OOC. A semi-automatic object-oriented fea-
ture model has been implemented for the detection 
and mapping of DP using ERDAS Objective Imagine 
(Chepkochei, 2011; Lack and Bleisch, 2010; Rizvi et al., 
2019; Issa et al., 2020b). 

The same Al Foah farms area, north of Al Ain city 
(Figure 23) was used as a pilot area to create and cal-
ibrate the Feature Model Tree (FMT). It contains more 

than 60,000 palms of different ages and cultivars and 
was subject to many visits during the study period 
(Issa et al., 2018; Issa et al., 2019, Issa et al., 2020c). 
The FMT was then run on the entire WV-2 sharpened 
images (Lack & Bleisch, 2010). This model became 
the basis for the extraction of DP at different age stag-
es which consisted of several sequenced “process 
nodes” (Figure 23). Best parameters were selected 
and trained following a trial-and-error approach. 

Maps of DP at three age stages: young, medium, 
and mature were created using the sub-meter WV-2 
imagery. GIS tools for cleaning up the vector shapefile 
resulting from the OOC method were used success-
fully to enhance and improve highly the accuracy of the 
final maps. Figure 24 shows the final DP map at three 
different age stages in AD emirate (mature, medium, 
and young); while Table 22 displays areas (in hectare) 
of each category with a total area equal to 7,588.04 ha. 
It can be noted that more than half of the Abu Dhabi DP 
trees areas were mature DP (> 10 years).
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Figure 24: Map of DP trees showing three age stages using WV-2. The boxes represent the DP maps at 
different scales and different locations (Alfoah, Alain Oasis, Alkhatem, Liwa west, Liwa east, and Ghiathi).

Figure 23: Object-orianted classification of DP in Abu Dhabi. (a) The three age stages of date palms produced, after 
applying the object-oriented approach on WV-2 images on a testing area in Al Foah DP farms area, to optimize the selected 
parameters.  (b) FMT for the extraction of DP trees with three age stage.
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3.5.
Maps 
Validation 

The accuracy of the classified maps 

was assessed using standard sta-

tistical tools. The results are summarized and 

shown in (Table 14), they show a good overall per-

formance of the classification process with an 

overall accuracy of about 81.7% for LULC map 

and 87% for the vegetation bit-map using Land-

sat-8 OLI. Furthermore, the overall accuracies 

of the DP maps, produced using the sub-me-

ter WV-2, at different age stages, were deter-

mined to be 86.8%, 88% to 90.7%, for young, 

medium, and mature DP trees, respectively.

 Also, the accuracy of the DP map derived from 
WV-2 was assessed for all three age stages combined 
(considered as one DP class only). The resulting map 
had an overall accuracy of 94.5% and a kappa coeffi-
cient of 88% (Table 14). These figures are considered a 
great achievement considering the efforts exerted by 
the government to inventory DP in the emirate. 

 Table 14: Accuracy assessment of the classified maps.

Data Source Classified map
Producer’s

Accuracy %
User’s Accuracy % Overall Accuracy % Overall Kappa 

Landsat-8 

LULC (7 classes)

81.71 0.8094

Deep Water 92.68 76.00

Shallow Water 95.65 88.00

Urban 85.71 72.00

Vegetation 74.07 80.00

Sand Dunes 81.81 90.00

Sand Sheets 74.07 80.00

Sabkha 74.14 86.00

Landsat-8 

Vegetation bitmap

87.00 0.7400Vegetation 97.44 76.00

Non-vegetation 80.33 98.00

Landsat-8

DP bitmap   

77.5 0.5500DP 92.24 61.67

Non-DP 70.89 93.33

WV-2

Mature 100.0 81.48 90.74 0.8148

Medium 95.34 80.00 88.00 0.7600

Young 93.75 78.95 86.82 0.7368

All Ages

94.5 0.888DP 94.59 95.45

Non-DP 94.38 93.33
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3.6.
Counting 
Date Palms in 
the Emirate of 
Abu Dhabi

Mapping DP using the sub-meter 

WV-2 instrument allowed not only 

to delineate the edges of DP crowns but also 

provide with the ability to count their numbers in 

Abu Dhabi. The counting of DP was simpler for 

non-mature DP (medium and young), where there 

is no overlapping between DP crowns, hence 

each palm was delineated by only one polygon 

“one entity”. However, the counting became 

more complicated for mature DP (i.e., full cano-

py producing non-district objects representing 

each mature DP) or, in dense planting farming 

systems (small spacing among palms is the 

common practice), where the straight forward 

method of counting polygons become difficult. 

Each category (age stage) was processed 

separately; therefore, the count of DP in each planted 

area (young, medium, and mature) was determined 

by dividing the area (in meter) by the mean crown 

area (CA) of each DP age stage which were: 2.41 m2, 

17.72 m2, and 47.78 m2, for young, medium, and ma-

ture, respectively. The total number of DP planted 

in the study area counted an estimated number of:  

8,966,826 palms (Table 15). 

Table 15: The preliminary results of the total numbers of the DP in AD. 

Age stage (year) Number (palm)

Young (< 5) 7,145,436

Medium (5 – 10) 943,646

Mature (> 10) 877,744

Total 8,966,826
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3.7.
Summary

A framework for mapping DP in 

the study area with varying age 

stags and based on integrating multi-source/

multi-sensor data in a hierarchical integrat-

ed approach (HIA) was proposed.  Landsat-8 

OLI scenes succeeded in delineating and 

mapping mature DP trees with acceptable 

accuracy. However, it failed to depict young 

and medium DP, because of inadequate 

sensor resolutions at such level of detail. 

Consequently, an object-oriented classification 

(OOC) approach was applied using sub-meter World-

View-2 (WV-2) imagery, at the DP plantation level, to 

depict and map medium and young aged DP. GIS 

helped in converting from raster to vector formats, al-

lowing for manual editing of certain polygons hence, 

increasing the accuracy of the produced maps, more 

specifically for young DP. 

Date Palm Area in Abu Dhabi

Class
Mature 
DP

Medium 
DP

Young 
DP

Total

Area (ha) 4,193.86 1,672.14 1,722.05 7,588.05

Percentage 
(%) 55.27 22.04 22.69 100%

The outcomes of the implemented approach 

were the creation of detailed and accurate maps of 

DP at three age stages. This step is essential in the 

building process of the RS-based biomass estima-

tion model, for the assessment of the CS of DP (see 

Chapter 4). The produced maps were validated using 

existing ancillary data and field checks. The overall 

accuracies for young, medium, and mature DP trees 

were 86.8%, 88% to 90.7%, respectively; while for 

mixed-ages DP the value reached up to 94.5%, with 

an overall Kappa statistics estimated at 0.888. 
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4.1.
Overview

The flowchart below used to de-

velop and validate the RS-based 

biomass model is presented in (Figure 25). It 

shows the main components of the model: 

• identification of RS predictors that can be used 
to estimate AGB; 

• selection of sample plots representing different 
age classes of DP (mature, medium, and young); 

• collection of field data necessary to estimate 
AGB using the DP-specific biomass allometric 
equations; 

• building the RS-based biomass estimation 
model using various regression methods and val-
idating it by using different statistical metrics, and 

• producing a map showing CS distribution 
throughout the emirate, by creating the AGB dis-
tribution map first, then converting it into CS distri-
bution map. Our model was developed and imple-
mented using ERDAS Imagine 2020, and ArcGIS 
10.7 software packages. 

DP trees in the study area were classified ac-
cording to their age into three classes: mature date 
palm (MDP) (more than 10 years), medium date palm 
(MeDP) (5-10 years), and young date palm (YDP) (less 
than 5 years). Two extensive field visits were conducted 
in Emirate of Abu Dhabi at the end of summer and during 
winter of 2018 targeting farms with different age stages 
trees, to collect data from sample units representing the 
three DP age stages (for geographical and environmen-
tal settings of the study area, see Appendix (7).

The first visit took place from 10th to 18th Septem-
ber and the second from 14th to 6th December. In all, 
54 plots of DP trees were selected using a randomized 
probability sampling design (stratified random design) 
according to their age stage (MDP, MeDP, and YDP). 

The plot survey included 17 representing MDP, 
19 representing MeDP, and 18 representing YDP. The 
dimension of the plots were 40 m × 40 m, to ensure 
that one Landsat 30x30 meter pixel fell within each 
plot (Figure 26) (Issa et al., 2019).  The coordinates of 
the plot’s center and the number of DP in each of the 
54 plots were recorded. The mean values of these var-
iables (single bands and VIs) for all plots were calculat-
ed using a 3 × 3 window centered over each plot and 
consequently used in the model development. 3x3 
window was used to reduce the uncertainties in RS 
data resulting from plot positioning errors that could 
be created because of the mismatching of sample 
plots with the image pixels introduced when the x and 
y coordinates of sample plots were located using GPS 
(Figure 26).

Trunk height (Ht) and crown diameter (CD) for 
each palm were measured and subsequently used 
to calculate its crown area (CA), assuming a spherical 
palm crown (CA = π CD2/4). It is worth mentioning that 
we initially selected 83 field plots for surveying but had 
to exclude 29 of them leaving 54 only. The reasons for 
exclusion were: (1) sparse distribution of DP per plot 
(< 20 palm per plot), (2) suffering of DP from abiotic 
stresses (e.g., drought: direct observation in the field 
or/and through discussion with the farmers as some 
DP were deliberately not irrigated to get rid of them), 
and (3) the large level of heterogeneity not represent-
ing, accurately, the age stage class (mature, medium, 
and young).

The AGB at the plot level was estimated by using 
DP biomass allometric equations previously developed, 
specifically for DP of Abu Dhabi under arid land ecosys-
tem conditions (Issa et al. 2020b). AGB for each DP was 
first estimated by adding crown biomass (CB) and trunk 
biomass (TB) using the equations presented in Table 16 
AGB at the plot level was then predicted by summing 
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sensing variables

as predictors

- Mature, Medium, and Young 
   date palm plots

- Single bands
- Vegetation lndices

Select sample plots
of date palms from
three age classes

allometrlc equations
Collect necessary field

data to calculate
AGB

Build and validate 
the RS-based

biomass estimation
models

Quantifying and
visualizing the CS
by date palm ages

in Abu Dhabi

-Using biomass

-Regressiona nalyses
( linear and non-linear)
-Statistical metrics
(R-square,P -value, etc ..)

-Convert to Spatial/ Models
-Apply to the whole study area
-Convert from biomass to carbon

Figure 25: The flowchart for developing and validating the RS-based biomass model (Dahy et al., 2023).
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the AGB for all palms in the plot and converting the re- sults to biomass density in tons per hectare (t. ha−1). 

Table 16: The Crown and Trunk biomass equations used for AGB (kg. palm−1) estimation of DP in study area.

Biomass Component Allometric Equation R2 P-value Reference

CB = 14.034 × 1.057CA 0.8354 0.001 (Issa et al. 2020b)the authors demonstra-
ted that combinations of visible and short 
wave single bands (Red, SWIR1, SWIR2

TB = 40.725 × Ht0.9719 0.8276 0.0004

AGB = CB + TB

where CB is crown biomass, TB is trunk biomass, AGB (= CB+TB) is the above-ground biomass, CA is crown area (m2), Ht is 
trunk height, R2 is coefficient of determination.

Atmospherically corrected (Level-2) Landsat 8 
OLI scenes, were used to build the RS-based model. The 
data which comprised different types of DP trees were 

geo-registered to the UTM coordinate system (Zone 
40, WGS 84). Seven bands were selected, stacked, and 
stored using ERDAS software package (Table 17). 

Table 17: Details of dataset used in the current research.

Scene (Path/Row) Date (2017) Landsat 8 OLI Level 2 Bands (µm) Resolution/ Swath

160/43 24th April Coastal (B1): 0.433–0.453, 

Blue (B): 0.450–0.515, 

Green (G): 0.525–0.600

Red (R): 0.630–0.680, 

NIR: 0.845–0.885, 

SWIR1: 1.560–1.660, and SWIR2: 2.100–2.300

30 meters. Swath 
area is 185 km.

160/44 26th May

161/43 15th April

161/44 15th April

162/43 22nd April

162/44 22nd April

Pixel (30x30 m)

3x3 Pixel window 

Plot size (40x40 m)

 Figure 26: The 40 × 40 m plot design. The red window 
delimits the nine Landsat pixels covering the plot (Issa 
et al. 2019).
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A combination of individual reflective bands 
and VIs were used as remote sensing predictors 

to estimate AGB. Both reflective bands listed in 
Table 18.

Table 18: Selected Landsat 8 OLI-derived vegetation indices (VIs).

VIs Equation Source

 SR NIR/R (Birth and McVey, 1968)

 RVI R/NIR (Pearson and Miller, 1972)

 DVI NIR–R (Tucker, 1979)

 NDGI (G-R)/(G+R) (Courel et al., 1991)

 NDVI (NIR-R)/(NIR+R) (Rouse, 1974)

 TVI √(NDVI +1) (Srestasathiern and Rakwatin, 2014)

 GNDVI (NIR-G)/(NIR+G) (Gitelson et al., 1996)

 RDVI (NIR – R)/√(NIR + R) (Roujean and Breon, 1995)

 SAVI (1.5 × (NIR – R))/(NIR + R + 0.5) (Huete, 1988)

 MSAVI 0.5 × [2 RNIR + 1 – √((2 RNIR + 1)2 – 8 (RNIR – Rred))]
(Qi et al., 1994)however, the L factor should vary 
inversely with the amount of vegetation present. 
A modified SAVI (MSAVI

 TCG
−0.2941 × B − 0.2430 × G −0.5424 × R + 0.7276 × NIR + 
0.0713 × SWIR1 − 0.1608 × SWIR2

(Baig et al., 2014)

 TCB
0.3029 × B + 0.2786 × G + 0.4733 × R + 0.5599 × NIR + 
0.5080 × SWIR1 + 0.1872× SWIR2

(Baig et al., 2014)

 TCW
0.1511 × B + 0.1973 × G + 0.3283 × R + 0.3407 × NIR − 0.7117 
× SWIR1 −0.4559 × SWIR2

(Baig et al., 2014)

where SR is the simple ratio, RVI is the ratio veg-

etation index, DVI is the difference vegetation index, 

NDGI is the normalized difference greenness index, 

NDVI is the normalized difference vegetation index, 

TVI is the transformed vegetation index, GNDVI is the 

green normalized difference vegetation index, RDVI is 

the renormalized difference vegetation index, SAVI is 

the soil-adjusted vegetation index, MSAVI is the mod-

ified soil adjusted vegetation index, TCG is the tasse-

led cap transformation index for greenness, TCB for 

brightness and TCW for wetness.

Different regression types (linear and non-lin-
ear) were considered to evaluate the relationships 
between RS predictors and AGB values for each plot 
predicted from ground measurements and allo-
metric equations. Linear regression model was 
first tested, and their performance assessed 
based on their coefficients of determina-
tion (R2) and significance (P-value < 0.05). A 
stepwise multiple linear regression analysis, 
involving several single bands and VIs, was 
subsequently applied to achieve im-
proved correlation.

115A case study from the Emirate of Abu Dhabi, UAE.



Total
Height

Crown Diameter

Trunk
Height

AGB

BGB

DBH

Remote Sensing
Variables

(Single bands /
Vegetation Indices)

REGRESSION
MODEL

Field
Variables 

(Biomass / Carbon) Mapping
the Carbon Stock

Palm
Variables

Infographic 11: A graphic abstract illustrating 
the conceptual summary of the process 
for estimating carbon stock in date palm 
plantations as carbon assessment maps
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The AGB estimation model was assessed us-
ing cross-validation for each plot; Root Mean Square 
Error (RMSE), RMSE%, and the systematic prediction 
error (SPEr)s, were estimated in percentage after ran-
domly splitting the plot measurements dataset into 
a calibration dataset (80%), and a validation dataset 
(20%). The RMSE, RMSE%, and SPEr were estimated 
using the equations 7, 8, and 9.

RMSE =              Equation       (7)

RMSE % =            Equation         (8)

SPEr=                                    Equation         (9)

where (ŷi) is the predicted AĜB of the ith plot,  

is the observed AGB of the ith plot, (y) is the mean of 

predicted AĜB, and  is the mean observed AGB.

Maps of DP trees, created in a previously pub-

lished study (Dahy et al., 2021), were used in the model 

to delineate the location of DP at different age stages. 

The reported accuracy of these maps was significant-

ly high with overall classification accuracy of 94.5%, 

and a kappa coefficient of 0.888. They showed that 

DP trees covered an area of about 7,588.04 hectares 

(22.69% for YDP, 22.04% for MeDP, and 55.27% for 

MDP). Subsets of Landsat 8 OLI images correspond-

ing to DP trees as defined in the DP maps were ex-

tracted using ERDAS imagine and used as input to the 

RS-based biomass model. 

The spatial model that estimates the amount of 

AGB (t. ha-1) for each Landsat pixel was implemented 

and run in the Spatial Model Editor within ERDAS Im-

agine to estimate and create an AGB map of the study 

area. The produced map was subsequently used as 

input to estimate the density of above-ground carbon 

(AĜC) for each pixel according to equation 10, based 

on a previously published carbon content to AGB ratio 

of 53.87% (Issa et al., 2020b). 

AGC (t. ha-1) = 0.5387 × AGB (t. ha-1)         Equation  (10)

To estimate AGB and AGC content (in ton), AĜB 

and AĜC density values (t. ha-1) produced by the model 

for each pixel were multiplied by the pixel size using the 

Attribute Table Function in ERDAS Imagine. AĜB (in ton) 

was subsequently used to estimate the other carbon 

components involving biomass as described below.

The total amount of CS was estimated as the 

sum of the carbon content of each of the following five 

biomass components: AGB, below-ground biomass 

(BGB), litter, woody debris, and soil organic matter 

(SOM) (Eggleston et al., 2006). BGB, litter, and debris 

were predicted from the estimated AGB value. The 

soil organic carbon (SOC) was deduced from the SOM 

amount which was estimated as 91.38%.

Below-ground biomass (BGB)

BGB is generally estimated at 20% of the AGB 

in several published studies (Cairns et al., 1997; Koala 

et al., 2017; Mokany et al., 2006; Niether et al., 2019). 

However, we found different ratios among different 

DP age stages with averages of 0.332, 0.925, and 

0.496 for YDP, MeDP, and MDP, respectively (Issa et al. 
2020b). Therefore, the following equations (11, 12, and 

13) were developed to estimate BGB of DP:

BGB
MDP

 (t) = AGB (t) × 0.496        Equation        (11)

BGB
MeDP

 (t) = AGB (t) × 0.925         Equation    (12)

BGB
YDP

 (t) = AGB (t) × 0.332        Equation       (13)

On the other hand, the percentage of carbon 

content in the root system of DP (BGB) was found to 

be 51.27% (Issa et al., 2020b), which is slightly lower 

than the carbon content in the AGB. Therefore, be-

low-ground carbon (BĜC) was estimated in tons by 

multiplying the resulting values from equations 11, 12, 

or 13 by a factor of 0.5127 (equation 14).

BGC (t) = 0.5127 × BGB (t)       Equation     (14)

Litters, and Woody Debris 

118 Date Palm and Carbon Footprint



Carbon content of dead wood or litter and 

woody debris were assumed to be between 10 and 

20% of the AGB (Gibbs et al., 2007; Houghton et al., 
2009; Issa et al., 2020a). The borders between dead 

biomass and litter, and between dead biomass and 

SOM, are rather subjective (Houghton et al., 2009). 

Based on extensive field visits to DP farms at different 

age stages, it was observed that litter and debris ratio 

to AGB of DP varied depending on the palm age stage. 

The more the palm matures, the more it produces lit-

ter and debris. The researchers adopted the following 

percentages to be applied to predict litter and debris 

(in ton) from AĜB (in ton), for DP trees; 10% for YDP, 

15% for MeDP, and 20% for MDP.

Soil Organic Carbon (SOC)

The DPs contribute about 22.26 tons of SOC 

per hectare in trees (Issa et al., 2020b). This number 

was calculated by performing the combustion method 

for 4 hours at 550℃ on soil samples taken at top soil 

(10 cm) from underneath the DP canopy, and then de-

riving of the SOM, and the SOC. Furthermore, the SOC 

(in ton) of DP for the three age stages were calculated 

as per equation 15.

SOC = Area × 22.26 t. ha-1       Equation      (15)

where the total areas of MDP, MeDP, and YDP 

in the study area were estimated to be 4,193.86 ha, 

1,672.14 ha, and 1,722.05 ha, respectively (Dahy et al., 
2021).

Finally, ERDAS spatial modelling tools were 

used to produce the AGB map for the whole study area 

utilizing the selected model built from the RS variables 

as estimated by the results of our analyses. AGC map 

was then created by multiplying the estimated AGB by 

0.5387 as per the equation 10. 
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4.2.
Descriptive 
Statistics of 
the Structural 
Field 
Variables 
Assessed

Structural variables of 2063 palms 

included in the 54 plots were 

measured in the field. Statistics about these 

measurements including the number of DP 

for each age stage class, average CA, Ht, 

and densities of DP per hectare, are summa-

rized in Table 19. The average palm CA in me-

ter and its standard error (±SE) of the MDP, 

MeDP, and YDP plots were 36 (±1.64), 22.51 

(±1.22), and 6.65 (±0.67) m2, respectively. 

The average palm Ht’s of the MDP, MeDP, and 
YDP plots were 2.89 (±0.22), 1.07 (±0.08), and 0.15 
(±0.03) m, respectively. It is obvious that the increase 
in DP age results in an increase in CA and Ht. The av-
erages of DP number per plot of MDP, MeDP, and YDP 
were 41, 38, and 35, respectively, which, based on a 
plot area of 1600 m2, amounts to around 258, 238, and 
221 palm. ha-1, respectively. 

Table 19: Crown area (CA), trunk height (Ht), and density values of DP for each age stage.

DP Age Stage No. Palms Average CA (m2) Average Ht (m) Avg. Density (palm. ha-1)

MDP 701 36 (19.54 – 44.15) 2.89 (1.90 – 5.07) 258 (131 – 600)

MeDP 725 22.51 (11.85 – 32.45) 1.07 (0.39 – 1.64) 238 (131 – 450)

YDP 637 6.65 (2.52 – 13.94) 0.15 (0 – 0.37) 221 (144 – 306)

where MDP is mature date palm, MeDP is medium date palm, and YDP is young date palm. The numbers in the parenthesis 
represent the minimum and maximum values.
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4.3.
The Field 
Based 
Biomass 
Estimation 
Model of Date 
Palm and 
Estimating its 
Carbon

A B was estimated from the field 

measurement in all 54 plots. 

Table 6 shows the average and range of 

AGB in (t. ha-1) for DP at the three age stag-

es. The largest B was found in MDP plots 

while the lowest B was found in YDP plots. 

These outcomes were affected by the average 
CA of the plots (Table 20). Similarly, B was affected 
by the Ht average (Table 20). The averages of AĜB in 
tons per hectare (±SE) of MDP, MeDP, and YDP were 
estimated at 59.39 (±7.8), 23.33 (±2.5), and 6.15 (±0.5) 
t. ha-1, respectively. The AGC in (t. ha-1) was estimated 
by multiplying the average AĜB in tons per hectare by 
0.5387 (see equation 10). Therefore, the averages AĜC 
(±SE) for MDP, MeDP, and YDP plots were estimated at 
31.99 (±4.2), 12.57 (±1.4), and 3.31 (±0.3) t. ha-1. 

Table 20: The averages and ranges of A B ( B and B) at each DP age stage.

DP Age Stages No. Plots
Biomass (t. ha-1)

Crown Biomass runk Biomass A B

MDP 17 29.02 (12.45 – 49.49) 30.37 (11.95 – 106.76) 59.39 (24.41 – 149.35)

MeDP 19 13.34 (5.62 – 27.21) 9.98 (4.18 – 20.63) 23.33 (11.11 – 44.60)

YDP 18 4.85 (2.72 – 8.16) 1.30 (0 – 4.08) 6.15 (2.72 – 9.90)

where MDP is mature date palm, MeDP is medium date palm, YDP is young date palm, and AĜB is the estimated 
above-ground biomass. The numbers in the parenthesis represent the minimum and maximum values. 
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4.4.
The Remote 
Sensing 
Based 
Biomass 
Estimation 
Models

As the DP age has an important 

role in their biomass (Table 20), 

the regression analysis linking the field vari-

ables with the RS predictors was conducted 

according to the DP age stages defined earlier.

4.4.1. Mature Date Palm Model

In MDP plots (17 plots), the linear correlation be-

tween AGB and single bands was only significant for 

SWIR bands; at the same time, it was significant for 

all tested VIs except TCB and TCG (appendix 8). The 

highest correlation was for SWIR1 and SWIR2 bands 

with R2 values of 0.302 and 0.290, respectively. While 

for VIs, NDGI and SR showed the highest correlation, 

with R2 values of 0.609 and 0.545, respectively. 

On the other hand, TCW showed the strongest 
correlation to AGB using a second-order polynomi-
al model. Additionally, stepwise multiple regression 
analysis on AGB of the MDP revealed that a group-
ing of single bands or of VIs did not improve the R2. 
Therefore, the second-order polynomial model that 
uses only TCW as RS predictor was found to be the 
strongest model to estimate the biomass of MDP with 
R² equal 0.7643 and P-value equal of 0.007 (equation 
16 and Figure 27).

AGBMDP (t. ha-1) = 0.00006 xTCW2 + 0.1212 x TCW 

+ 96.708  Equation         (16)

4.4.2. Non-Mature Date Palm Model

It was found that R2 could be improved by con-
sidering medium and young DP as one age class, the 
non-mature class (Non-MDP) (appendix 8). Running the 
regression analysis for Non-MDP (37 plots: the combi-
nation of MeDP and YDP) resulted in a stronger corre-
lation between AGB and RS predictors. All of Landsat 
8 OLI single bands with the exception of B, G, and NIR, 
and all the VIs except NGVI, exhibited significant corre-
lation with AGB. The stepwise regression analysis on 
AGB of the Non-MDP revealed that a grouping of single 
bands or VIs did not improve the R2. The exponential 
regression model using RDVI yielded the strongest 
correlation with an R2 value of 0.4987 and P-value 
equals 0.00002 (equation 17 and Figure 27). 

AGB
Non-MDP

 (t. ha-1) = 0.8257 x e0.1469 × RDVI       Equation (17)
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Figure 27: AGB for DP as function of TCW and RDVI. (a) for mature DP, and (b) for non-mature DP.
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4.5.
Models 
Validation

Field measurements and the 

statistical accuracy assess-

ment were used to validate the devel-

oped AGB model. The accuracy statistics 

included RMSE, RMSE%, and SPEr. Ta-

ble 21 summarizes the selected regres-

sion models for the estimation of the AGB 

from Landsat 8 OLI single bands and VIs. 

Table 21: Model(s) used for A B estimation (t. ha-1) for mature and non-mature date palms 

Regression Model DP Class R2 P-value RMSE RMSE% SPEr

A B= 0.00006(TCW)2 + 0.1212(TCW) + 96.708 Mature 0.764 0.007 6.322 14.912 1.43

A B= 0.8257 × 1.1582(RDVI) Non-mature 0.4987 0.00002 8.040 51.376 -5.04
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4.6.
Creation 
of the 
Aboveground 
Carbon Map 
of Date Palm 
Trees

The final AGB map was created using 

the regression models shown in Ta-

ble 21. The two sub-models that use TWC for MDP 

and RDVI for Non-MDP are depicted in Figure 28. 

The map of AGC, shown in Figure 29, is predicted 
from AGB map using equation 10.
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Figure 29: The aboveground carbon 
(AGC) map of DP in the study area 
(Abu Dhabi). Two areas were zoomed 
where the different shades of 
greyscale are obvious: (a) Liwa and 
(b) Al Ain. The lighter pixels (digital 
number), the more amount of AGC 
(t. ha-1). The black color represents 
areas without DP.

a)

b)
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4.7.
Estimating 
the Total 
Carbon Stock 
of Date Palm 
Trees

Table 22 summarizes the re-

sults of the CS analysis. We 

found that the overall CS by DP trees 

in Abu Dhabi was 2,447,856.87 tons. 

Table 22: The total CS (in Mt) by DP trees in Abu Dhabi, UAE.

DP
Class

Above-Ground Below-Ground Litter & Debris

SOC Total

A B A C B B B C Biomass C

MDP 1.210 0.652 0.600 0.308 0.242 0.130 0.093 1,183

MeDP 0.384 0.207 0.356 0.182 0.058 0.031 0.037 0.458

YDP 1.008 0.543 0.335 0.172 0.101 0.054 0.038 0.807

Total 2.602 1.402 1.290 0.662 0.400 0.216 0.169 2.448

Mt = 1 million tons.
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4.8.
Summary

Data from Landsat 8 OLI were used 
to assess the correlation be-

tween spectral reflectance and different VIs 
on one side, and AGB derived from ground 
measurements on the other. RS data of mod-
erate resolution such as the freely available 
long record of Landsat satellite imagery were 
used successfully to build a RS-based bio-
mass estimation models at different age stag-
es of DP (mature DP and non-mature DP). 

The allometric equations developed previous-
ly (see Chapter 2) provided an important element in 
the design, libration, and implementation of a novel 
approach to assess AGB (ton. ha−1) and to estimate 
CS stored (ton. ha−1) in DP trees. The relationships 
between the estimated AGB and parameters derived 
from RS data were tested using single and multiple lin-
ear regression analysis. 

The obtained results helped identify the RS pre-
dictors that exhibited the highest and most significant 

correlation with AGB calculated from field measure-
ments and the allometric equations developed in this 
study. Models using theses predictors were adopted 
to estimate AGB from RS data for the different age 
classes of DP consequently map and estimate CS for 
the whole study area (see Table 23).  

For mature DP class alone (>10 years), the 
strongest correlation between AGB and RS predictors 
was found for the VI TCW using a second-order poly-
nomial equation with R² equal to 0.7643 and P value 
equal to 0.007. For medium DP, the second-order pol-
ynomial equation that uses only DVI as RS predictor is 
the strongest model to estimate the biomass of me-
dium DP with R² equal to 0.2286 and P value equal to 
0.049. While for young DP, the linear regression equa-
tion that uses only NIR as RS predictor is the strongest 
model to estimate the biomass of young DP with R² 
equal to 0.2828 and P value equal to 0.023. 

However, combining these two classes into one 
non-mature class yielded a stronger and more signif-
icant correlation. An exponential regression equation 
that uses RDVI as RS predictor was the best single VI 
and had the strongest correlation among all RS varia-
bles of Landsat 8 OLI for AGB of non-mature DP, with an 
R2 value of 0.4987 and P value equal 0.00002. Finally, 
the models applied on the DP maps of Abu Dhabi that 
were produced previously (see Chapter 4) to map and 
quantify the CS of DP of Abu Dhabi. The overall CS by 
DP trees in Abu Dhabi (including the five components: 
AGB, BGB, litter, debris, and SOC) is 2,447,856.87 tons 
with an average of 322.6 ton.ha-1 (see Table 22).

Table 23: RS predictive variables used in the RS based biomass models 

RS Model Vegetation Indices Significant Variables

Model 1 (Mature):

AGB= 0.00006(TCW)2 + 0.1212(TCW) + 
96.708

TCW: 
(= 0.1511 × B + 0.1973 × G + 0.3283 
× R + 0.3407 × NIR − 0.7117 × 
SWIR1 −0.4559 × SWIR2)

B (0.450–0.515 µm)
G (0.525–0.600 µm)
R (0.630–0.680 µm)
NIR (0.845–0.885 µm)
SWIR1(1.560–1.660 µm)
SWIR2 (2.100–2.300 µm)

Model 2 (Non-Mature):

AGB= 0.8257 × 1.1582(RDVI)

RDVI:
(NIR – R)/√(NIR+R) 

R (0.630–0.680 µm)
NIR (0.845–0.885 µm)

Where B is blue band, G is green band, R is red band, NIR is near infrared band,
and SWIRs are shortwave infrared bands.
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5.1.
Biomass 
Allometric 
Equations & 
Carbon Stock 
of Date Palm

One of the first steps in the devel-

opment of models for estimation 

CS was the development of allometric equa-

tions that relate AGB to palm structural varia-

bles. In previous studies, some authors used 

fresh weight to build allometric equations, as it 

was the case in some southern Asia oil palms 

studies (Dewi et al., 2009; Khalid et al., 1999a). 

Others used dry weight as in some tropical and 

west African regions (Corley et al., 1971; Then-

kabail et al., 2004) (see Appendix 1). For DP, it 

was found that the correlation coefficient be-

tween the total fresh and dry weights of DP to 

be 0.99, in agreement with values usually re-

corded in palm experiments (Corley et al., 1971). 

Consequently, dry weight was adopted as a sur-
rogate to develop specific allometric equations for the 
calculation of AGB of DP in the UAE. Results showed 

that the dry weight of DP averaged 42% of their fresh 
weight (Chapter 2, Table 5). When considering the 
trunk alone, that ratio averaged around 37%. This is 
higher than trunk dry/wet ratios of 20% reported in  
other studies (Khalid et al., 1999a) and can be  attrib-
uted to the conditions of desert ecosystems where 
plants adapt to water stress due to the limited availa-
bility of water intake (Aronson et al., 1992; Felker, 2009; 
Figueiredo et al., 1999; Kappen et al., 1972; Mwanam-
wenge et al., 1999; Ramos et al., 2003). 

The total palm biomass was calculated as the 
sum of AGB and BGB, where BGB was derived from 
AGB using different ratios according to age stage. The 
ratio of BGB to AGB in DP was estimated at 0.33 for 
young DP. Such ratio increased to 0.92 for medium 
DP and decreased to about 0.5 for mature DP. The in-
crease observed in medium age may be attributed to 
the substantial growth of the palm’s root system at this 
age stage to support the emergence of the trunk and 
help the palm keep balance. 

Resource allocation within plants generally is 
affected by biotic and abiotic stresses (Ketterings et 
al. 2001; Koala et al. 2017; Litton and Boone Kauffman 
2008; Adam and Jusoh 2018; Diédhiou et al. 2017). 
Still, in the current case the BGB to AGB ratios in DP, 
at all age stages, were found to be consistently high-
er than the ratio of 0.2, commonly used  by many re-
searchers for other forest species biomass estimation 
(Achard et al., 2002; Cairns et al., 1997; Gibbs et al., 
2007; Houghton et al., 2009; Mokany et al., 2006; Ra-
mankutty et al., 2007).

 It is important to note that these published ra-
tios were derived from regular tree species, other than 
palms, in tropical, boreal and temperate ecosystems 
which are completely different from those growing in 
desert ecosystems (Mokany et al., 2006). DP species 
in particular, show unique plant architecture and ana-
tomical characteristic (Da Silva et al., 2015). 

Age stages have substantially affected biomass 
accumulating in DP. In young DP, with no developed 
trunk, the AGB averaged 22.5 Kg.palm-1. Progressively, 
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AGB increased with age where medium palms AGB 
increased to an average of 94.7 Kg.palm-1 due to the 
trunk development and the increase in number and 
diameter of crown fronds (Figure 30). The increase in 
AGB continued in mature palms to exceed 284 Kg. 
palm-1. The percentage of AGB to total biomass also 
varied during growth with averages of 75.1%, 51.9% 
and 66.8% for young, medium and mature palms, re-
spectively. The average AGB to total biomass ratio was 
found to be 64.3%.

The high correlation between age and biomass 
indicated that age was the best parameter to estimate 
AGB of DP with three distinguished stages of storing 
biomass. 

 Firstly, young DP stage, where most of the 
biomass was stored in its crown representing about 
75.11% of the total biomass. 

 Secondly, medium aged DP where trunk start-
ed developing and taking a portion from the total bio-
mass (around 16.2%). This portion was offset by dou-

bling that of the root biomass from 24.89% to 48.06% 

of the total biomass. 

Thirdly, mature DP where the dry biomass was 

distributed equally among the three palm components 

(crown, trunk and root). 

Similarly, Henson and Chang (2003) used age to 

calculate the standing biomass of oil palm while Corley 

and Tinker (2008) found that the density of dry trunk in-

creased with palm age. The regression analysis of age 

with AGB of the DP showed that CB increased at about 

14% per year and that TB increased 18% yearly.

Nonetheless, age is a non-structural variable 

that cannot account for biomass variations within the 

same stage in a plantation and measured directly in 

the field (Korom et al., 2016). In addition, it does not sat-

isfy the aim of identifying variables that can be directly 

measured by RS and hence provide an alternative ap-

proach to estimating the biomass and CS in DP trees 

(Salem Issa et al., 2019). 

 Figure 30: The biomass (dry weight) of DP versus age stages.
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Therefore, using structural variables such as H, 
Ht and DBH, to build AGB regression equations are 
preferred (Corley & Tinker, 2008; Dewi et al., 2009; 
Khalid et al., 1999a; Thenkabail et al., 2004). Generally, 
DBH is widely used in biomass equations in tropical 
regions because of the high correlation between DBH 
and AGB (Brown, 1997). However, in the current study, 
a weak to intermediate correlation between DBH and 
biomass was found. The correlation was insignificant 
with both CB (P value = 0.229) and TB (P value = 0.197) 
(see Chapter 2, Tables 8 and 9). 

This may be due to the growing effects of the 
palm trunk where the DBH becomes more stable and 
there is no significant increase in DBH from medium 
to mature DP. In addition, palms being monocots, have 
a different anatomy and form than other trees. The 
DBH does not increase with age, which may explain 
the weak relationship observed with biomass (Sajdak 
et al., 2014).

As the AGB is the resulting sum of crown and 
trunk biomasses, it could be estimated from CA and Ht, 
which were found to be the most significant field predic-
tors (see Chapter 2, Tables 8 and 9). CB was highly cor-
related with CA with the highest R² of 0.8354 obtained 
using an exponential regression equation. While the TB 
was highly correlated with the Ht with the highest R2 of 
0.828 reached using a power regression equation. Cor-
relations between CB and CA in one hand, and TB and 
Ht in the other, were also observed by others. 

Carlos et al. (2015), for instance, found that foli-
age (crown) biomass was strongly correlated with palm 
crown variables in Brazil.  Similarly, Korom and Matsuu-
ra (2016) studied the AGB of oil palms in Malaysia and 
analyzed different allometric equations. They reported 
that AGB could be estimated using CD of oil palms 
consistently at all ages with R2 ranging between 0.95 
and 0.97. The same can be said about CA as it could 
be calculated from CD using sphere equation (CA = 
πCD^2/4), assuming a rounded palm crown. 

Palm trees height was reported to be more use-
ful as an independent variable than DBH in AGB esti-
mations (Yuen et al., 2016). Likewise, in a study con-
ducted in Malaysia, Asari et al. (2013) concluded that 
palm height was more strongly associated with age. 
Carlos et al. (2015) found that the biomass was strong-
ly correlated with age and very strongly with Ht. 

Recently, Singh et al. (2018) found that AGB was 
highly correlated with the Ht in their study on oil palm 
trees in India. This could be explained by the fact that 
palm species growth pattern were nonlinear and each 
biomass component had its unique characteristics 
which would be reflected in the allometric model for 
estimating biomass (Korom et al., 2016; Da Silva et al., 
2015).  Crown dimensions have been used less fre-
quently in equations for AGB or biomass of any com-
ponent (Yuen et al., 2016). However, as the detection of 
biomass and its estimation by RS techniques greatly 
increase the efficiency in forest monitoring and meas-
urement (Holmgren et al., 1994), CB component has 
gained prominence in most research (Kumar & Mutan-
ga, 2017). 

The novelty introduced in the current study 
highlighted the value of integrating allometric equa-
tions with RS. The predictive power of such variables 
derived from moderate resolution satellite data, such 
as Landsat TM and ETM+ imagery, were valid to es-
timate palm biomass. The results of the regression 
analysis for the estimation of AGB and CS from the al-
lometric equations on one hand, and the RS indicators 
on the other (Issa et al., 2019), showed high correlation 
(see Chapter 4, Table 23).

 The significant correlations reported here sup-
ported the aim of the study to ultimately use RS data 
for estimating CS. The approach provided a significant 
advantage by enabling the calculation of AGB and CS 
for large areas based on field measurements at a lim-
ited number of representative sites used to derive the 
allometric equations. 
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The regression analysis yielded positive corre-
lation between CA and SOC with a coefficient of 0.903 
(P<0.0001), concluding that for DP’s CA could be used 
as a good predictor of SOC in DP. The average SOC 
added to the area dominated by DP ranged from 15.7 
ton. ha-1 to 34.5 ton. ha-1 with a mean of 22.26 ton. ha-

1(see Chapter 2, Table 12). 

These figures were determined from the fifteen 
DP destructively sampled measurements belonging 
to age stages ranging from 2.5 to 20 years. Compar-
atively, in Southern Ethiopia, Lemenih & Itanna (2004) 
found that semiarid acacia woodland added 14.7 ton. 
ha–1 of SOC in the top 10 cm of the soil, while Nys-
sen et al. (2008) found that grazing lands of Ethiopia 
could add 26 ton. ha–1 of SOC.  In the UAE,  Acacia tor-
tilis added around 14.7 tons of SOC per hectare while 
Colotropis procera added only 6.6 tons of SOC per 
hectare (Ksiksi, 2012). 

It is worth noting that different land manage-
ment practices can lead to differences in the accu-
mulation of SOC in different date palms trees  (El Tahir 
et al., 2009). Likewise, plant species differ markedly 
in their impact on soil carbon concentration and dis-
tribution, mainly because of differences in their root 
systems (Ksiksi, 2012; Lal, 2002). LULC change leads 
to change in SOC stock (Guo & Gifford, 2002). Affores-
tation, for instance, results in sequestration of new C 
and stabilization of old C in physically protected SOM 
fractions, associated with micro-aggregates and silt 
and clay (Nyssen et al., 2008). 
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5.2.
Mapping of 
Date Palm 
Trees at 
Three Age-
Stages 

The accuracy of capturing all DPs is crucial to 

the current research, as these layers are used as an 

input to a RS-based biomass and CS estimation mod-

el (see Chapter 4, Subsection 4.1). Because of the 

reasons explained in Chapter 1 (Subsections 1.2.3.3), 

the moderate resolution Landsat-8 OLI imagery was 

chosen. However, this choice raised many challeng-

es, particularly when mapping the non-mature DP (< 

10 years), with an average CD of fewer than 5 meters. 

The low canopy cover combined with the high 

contribution of desert background reflectance limit-

ed the efficiency of capturing the less developed and 

sparse DP trees at moderate resolution. Therefore, an 

integrated approach was proposed in this research, 

the HIA, applied to the multi-source / multi-resolution 

data from moderate Landsat-8 OLI and high-resolu-

tion WV-2 integrated with GIS. The HIA was able to de-

pict the three age stages of DPs: mature, medium, and 

young with high accuracy. 

First, a LULC map of the major seven classes 
in the study area was created, namely: urban, vege-
tation (including DP), sand sheets, sand dunes, deep 
water and shadows, shallow water, and sabkhas. The 
PBC method was applied to the Landsat-8 OLI scenes 
to perform this task, which was achieved successful-
ly. The seven LULC classes were mapped and their 
spectral reflectance separability was achieved effec-
tively. Although the overall accuracy of the LULC map 
was below the 85% level set as satisfactory for plan-
ning and management purposes (Anderson, 1976). 
However, there is a debate about the usefulness to 
take this level as standard; many publications report-
ed accuracies mostly below the usually advised 85% 
target (Foody, 2002; Rozenstein & Karnieli, 2011). 

Further light was shed by examining the user’s 
and the producer’s accuracies, which measure the 
commission and omission errors, respectively. The 
analysis of misclassified pixels in the LULC map indi-
cates that most of the errors are mainly of omission (see 
the accuracies of vegetation, sand dunes, sand sheets, 
and sabkhas layers at the LULC map in Chapter 3, Ta-
ble 14). The HCM, which combines both supervised and 
unsupervised classification, seems to provide an ac-
ceptable accuracy especially in the case of arid lands. 
This fact has also been reported by other researchers 
(Rozenstein & Karnieli, 2011) as well as in other ecore-
gions (Kamusoko & Aniya, 2009; Lo & Choi, 2004). 

The created LULC map showed that vegetated 
and urban areas constituted only 0.6% with 40,102.6 
hectares, and 0.49% with 32,333 hectares of the total 
area of the emirate, respectively. It is worth noting that 
sand dunes, sabkhas, and sand sheets areas were the 
dominant LULC classes in the whole emirate, making 
up more than 98% of the total area (see Chapter 3, 
Figure 24). Finally, the overall classification accuracy of 
the LULC maps was 81.71% with an overall Kappa Sta-
tistics equal to 0.81. 

Second, a vegetation bitmap of Abu Dhabi was 
created by merging all non-vegetation classes into 
one class. The “recode” function in ERDAS Imagine 
was used to produce the binary mask with only two 
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values: the value of “1” for the vegetation class, and 
the value of “0” for the non-vegetation class.  Vege-
tation in the study area were sparse and small in size 
(=32,333.3 ha, representing only 0.49% of the total 
study area). The overall classification accuracy of the 
created vegetation bitmap was 87%, with a Kappa co-
efficient equal to 0.74 (see Chapter 3, Table 14). 

The second phase of the classification ap-
proach of DP was run on the vegetation bitmap us-
ing the same HCM to isolate the DP plantation pixels. 
However, at this stage of the classification, only the 
mature DP trees were depicted due to the limitations 
of Landsat-8 OLI to differentiate soil background from 
the non-mature DP trees (≤ 10 years and have an aver-
age CD of fewer than 5 meters). Therefore, a different 
approach using different sensor characteristics was 
needed to map the other DP categories (medium and 
young) with accuracy. 

Third, mapping of DP at all age stages was 
achieved using the OOC method applied to the 
sub-meter WV-2 imagery. Using high-resolution sen-
sors such as WV-2, to detect low-density DP and map 
of the spatial distribution of DP in AD at different age 
stages: young (< 5 years), medium (5-10 years), and 
mature (> 10 years), proved very successful and added 
innovation to the actual research. Indeed, many stud-
ies upraised the use of high spatial-resolution for de-
picting and revealing information about the distribution 
and type of vegetation, especially in arid lands, and 
hence increase their distinguishability (Bradley et al., 
2019; Immitzer et al., 2012; Li et al., 2015; Mugiraneza 
et al., 2019; Xie et al., 2008). 

Several software packages supporting OOC 
and feature extraction are available. ERDAS Imagine 
2020 Objective tool was used, it employs “feature 
model tree” which applies to objects created by im-
age segmentation and other pixel-based algorithms 
which, after being vectorized, can be processed using 
geometric and textural parameters (Lack & Bleisch, 
2010).

 The “cue metrics” are the result of many trials 
and errors. There were two-level steps of analysis: (1) 
raster data analysis and, (2) vectorizing (the three ras-
ter outputs: mature, medium, and young) and cleaning 
up the vector layers by visual interpretation to remove 
erroneous vector if any. 

The OOC comprised many steps summarized 
as follows: i) starting with 0.5 m pan-sharpened WV-2 
images covering a test site (AlFoah farm, east of study 
area), optimum RS parameters were initially selected, 
analyzed and defined, for discriminating DP trees at 
three different age stages; ii) applying the produced 
parameters to the whole WV-2 dataset; iii) differen-
tiating DP crowns visually from the background; iv) 
training areas were carefully selected to exclude any 
background pixel and; v) pixels of individual palms 
were submitted to compute pixel cue metrics to train 
the classifier. However, it should be noted here that, 
one should familiarize himself with the study area to be 
able to train the representative signatures.  
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Evaluation of the three classified maps was car-
ried out using classification accuracy assessment in 
terms of mapping accuracy where results are summa-
rized in Table 14 (see Chapter 3). The overall accuracies 
of DP maps were 86.8%, 88%, and 90.7% for young, 
medium, and mature DP, respectively. The area of each 
category was calculated and found to be 4,193.86 ha 
1,672.14 ha, and 1,722.05 ha for mature, medium, and 
young DP trees, respectively. It was revealed that the 
total DP trees areas represented around 64.62% of 
the total vegetated areas in Abu Dhabi (mostly located 
in the east and south parts). This was expected due to 
the importance given to DP in the farming system of 
the emirate and the adopted government policies in 
granting farms to the local population.

Furthermore, comparing the results of DP maps 
produced using Landsat-8 OLI and WV-2 imagery, 
showed a big difference between the two methods. 
Landsat-8 OLI gave an area equal to 20,893.5 ha while; 
classifying WV-2 images gave an area of only 7,588.05 
ha. It is well known that, in general, classifying the Land-
sat-8 OLI images would overestimate the areas of DP 
trees compared to the classified WV-2 ones. A similar 
remark was noticed also by (Stych et al., 2019) who ran 
a comparison study between Landsat-8 OLI and WV-2 
for the classification of forests in Czech and they found 
that the area of wetland class was almost doubled on 
the classified Landsat-8 OLI images compared to the 
classified WV-2 images. This is explained by the fact 
that DP class areas estimated by the classified Land-
sat-8 images include the spacing areas (empty areas) 
among DP while the classified WV-2 images com-
pletely excluded these empty areas considering them 
as part of the pure soil class. Hence, only DP crowns 
were delineated and mapped (especially for non-ma-
ture DP where there is no overlapping of DP crowns). 
This is illustrated in a practical example in Figure 31. 

Furthermore, it was observed that mature DP 
showed better overall classification accuracy followed 
by medium and young DP, respectively. This could be 
attributed to the less background contribution in the 
overall reflectance of the pixel because of large crown 
areas covering mature DP; while medium and young-
er (smaller canopy cover) result in wider spacing and 
higher exposure of the soil background resulting in a 
mixed spectral signature. Finally, a marginal improve-
ment in classification was achieved through manual in-
tervention editing in a GIS. The implemented approach 
proved very promising, with little cost compared to 
more complex algorithms and expensive data, espe-
cially for researches with limited budget, which is the 
case in most developing countries. 

Figure 31: Differences in estimating DP trees ar-
eas at the same farm. The classifying of Landsat-8 OLI 
image as present in (a) gave 14.02 hectares of DP (yel-
low color), while (b) classifying of WV-2 image gave 3.77 
hectares only (yellow color). This difference is caused 
by spacing areas among palms that were added to the 
DP total cover with Landsat-8 images (because of low 
resolution); while the classified WV-2 images captured 
and classified these areas as background (non-DP).
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5.3.
Estimating 
the Total 
Carbon Stock                
in Date Palm 
Trees 

The main purpose of the current 

study is to build a geospatial mod-

el for the estimation of carbon stock (CS) of 

date palms (DP) and mapping its geograph-

ical distribution in the emirate of Abu Dha-

bi (UAE), at three age stages: mature, medi-

um and young. It is worth noting that parts of 

our findings have already been published.  

However, the novelty in the current study is re-
flected in many aspects including, the scope and ob-
jectives, the sample sizes, the datasets used, the mod-
el built, and the results and visualization. Indeed, the 
current study has been extended to cover the whole 
emirate involving larger sample sizes and comprising 
most cultivars of UAE’s date palms. The integration be-
tween the finer resolution WV-2 scenes, which served 
at depicting and mapping all DP trees at different age 
stages (Dahy et al., 2021), with Landsat Level 2 dataset 
to identify and measure more accurate RS predictors, 
allowed to build our final improved model. 

Figure 31: Differences in estimating DP trees areas at 
the same farm. The classifying of Landsat-8 OLI image 
as present in (a) gave 14.02 hectares of DP (yellow color), 
while (b) classifying of WV-2 image gave 3.77 hectares 
only (yellow color). This difference is caused by spacing 
areas among palms that were added to the DP total cover 
with Landsat-8 images (because of low resolution); while 
the classified WV-2 images captured and classified these 
areas as background (non-DP).
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Another novelty of the current research is that 
the generally adopted ratio of BGB estimated at 20% 
of the AGB in several published studies (Cairns et al., 
1997; Koala et al., 2017; Mokany et al., 2006; Niether et 
al., 2019), was not valid for our model. Instead, our re-
sults showed different ratios among different DP age 
stages with averages of 0.332, 0.925, and 0.496 for 
YDP, MeDP, and MDP, respectively (Issa et al., 2020b). 
Therefore, equations (11, 12, and 13) were developed 
and implemented to estimate BGB of DP instead. 

On the other hand, the percentage of carbon 
content in the root system of DP (BGB) was found to 
be 51.27% (Issa et al., 2020b), which is slightly lower 
than the carbon content in the AGB. Therefore, be-
low-ground carbon (BĜC) was estimated in tons by 
multiplying the resulting values from equations 11, 12, 
or 13 by a factor of 0.5127 (equation 14). Furthermore, 
carbon content of dead wood or litter and woody de-
bris are usually assumed to be between 10 and 20% 
of the AGB (Gibbs et al., 2007; Houghton et al., 2009; 
Issa et al., 2020a). 

However, based on extensive field visits to DP 
farms at different age stages, it was observed that litter 
and debris ratio to AGB of DP varied depending on the 
palm age stage. The more the palm matures, the more 
it produces litter and debris. The researchers adopted 
the following percentages to be applied to predict litter 
and debris (in ton) from AĜB (in ton), for DP trees; 10% 
for YDP, 15% for MeDP, and 20% for MDP.

Three models were initially built to estimate 
AGB for the three age stages: mature, medium, and 
young. However, the large contribution of background 
reflectance in the study area reduced the accuracy of 
separating the young and medium DP. This, in turn, 
weakened the statistical relationship between AGB of 
medium and young DP with RS variables derived 
from Landsat-8 OLI. Subsequently, young, and 
medium DP classes were merged to form one 
non-mature DP (Non-MDP) class, substan-
tially improving the statistical relationship be-
tween AGB and RS variables. Therefore, we 
opted for the creation of two sub-models only: 
one for Non-MDP and another for MDP. 
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Our study showed that when using single band 
to predict AGB, the SWIR bands of Landsat OLI pro-
duced the highest and most significant correlation for 
both MDP and Non-MDP trees. These results were in 
line with findings from a previous study in Tajikistan 
where the authors found that SWIR1, 2 of Landsat 8 
were convenient in detecting arid land’s vegetation 
(Zandler et al., 2015).  While our work on AGB of the MDP 
showed that a grouping of single bands or VIs does not 
improve the R2, it was noticed that VIs provided better 
predictors of AGB than single bands. Our results were 
also consistent with other studies that used Landsat 
imagery to estimate biomass in different regions such 
as the study reported in (Günlü et al., 2014).

 The decision of selecting the effectively per-
forming VIs is function of the type of ecosystem, en-
vironmental conditions, and spectral characteristics 
of the sensor. Spectral band saturation, for instance, 
is a well-recognized problem and can affect VI perfor-
mance and lead to inaccurate estimation of AGB (Zhao 
et al., 2016). However, this was not a major factor in our 
study region. 

Observed structural differences in DP trees in-
fluenced the calculation of AGB. Indeed, varied palms 
spacing were found in some plots; while sparse dis-
tribution of DP with no regular spacing, caused by hu-
man interferences, were found in others. It was also 
noted that regardless of the DP age, other factors af-
fected date palm’s CA and Ht and consequently the 
palm’s capacity to accumulate biomass and seques-
ter carbon. Cultivar and land management practices 
are examples of such factors. 

The largest average of DP density was found 
on MDP plots. In two cases of MDP plots, the number 
of DP reached 88 and 96 palms per plot which corre-
sponds to around 550 and 600 palm.ha-1, respective-
ly. This could be attributed to the old farming systems, 
where MDP were planted irregularly in the farm with 
short spacing among palms to benefit from the tradi-
tional irrigation systems (e.g. Aflaj irrigation systems). 
Nowadays, the palms are distributed in a more organ-
ized manner with wider spacing among them (7m×7m, 
8m×8m, and 9m×9m) leading to lower densities, al-
lowing agricultural tractors and machinery to navigate 

more easily. It is noticeable that an overlap between 
the crown area ranges of MDP and MeDP is found 
in some cases. This is due to regular pruning of DP 
fronds practiced in new trees. 

The pruning process aims to keep a specific 
number of fronds in the palm allowing more carbohy-
drates to go to the fruits (dates) than the fronds. It is 
rare to find Ht of DP taller than 5 meters in modern DP 
farms as the farmers tend to remove tall palms reach-
ing certain height, as they are more difficult to maintain 
and manage. However, during field measurement, the 
researchers observed some DP that exceeded 5 me-
ters, and some were extremely tall with very high Ht 
reached up to 15.2 m especially in the oases. In con-
trast, it was found that most YDP had Ht equal to zero 
and some of them had CA equal 0.07 m2 since their 
fronds were attached by cord with no trunk. These 
structural variations impacted the performance of 
spectral bands and VIs as predictors, affected the es-
timation of AGB and influenced the choice of estima-
tion model.

The approach implemented aimed at selecting 
the most appropriate regression model among the 
tested models to estimate AGB of DP at multiple age 
stages. It considered the use of linear and non-linear 
regression models with multiple single band, single 
VIs, and stepwise multivariate regression to estimate 
the most appropriate model from the tested models 
based on correlation, significance and RMSE. The 
model that provided the best estimate of AGB in the 
case of MDP, consisted in the use of a second-order 
polynomial where TCW served as the only RS predictor. 

This model yielded the strongest correlation 
and significance with R² equal to 0.7643 and a P-value 
equal to 0.007 with RMSE of 6.322 t.ha-1. For Non-MDP, 
an exponential model that uses RDVI as RS predictor 
provided the strongest estimate of biomass with R² 
equal to 0.4987 and P-value equal to 0.00002, while 
the model validation showed RMSE of 8.040 t.ha-1. 
These results were consistent with published litera-
ture for other species and study areas where Landsat 
8 was used for mapping and predicting AGB in wood-
lands (Karlson et al., 2015). 
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The DP age stage class derived from the WV-2 
data was processed to select the proper model from 
the tested models to use when estimating AGB. The 
resulting map was an emirate wide map of AGB that 
was subsequently used to predict CS. This step high-
lights the strength and uniqueness of our approach 
where RS-based model, once calibrated, enabled the 
creation of CS maps from remote sensing data without 
the need for additional field measurements.

The accurate total carbon stock estimation of 
DP trees in Abu Dhabi depends on the accurate esti-
mation of its biomass, specifically AGB that is predict-
ed by using biomass allometric equations. Therefore, 
one source of uncertainty could come from the equa-
tions themselves. To overcome this issue, the authors 
used published allometric equations developed from 
represented field samples of DP considering the dif-
ferent varieties as well as the three different age stag-
es in the study area. 

The other source of uncertainty for the estima-
tion of the biomass of DP, hence their carbon stock, 
could come from RS models that were built during 
the current study. The authors identified and select-
ed a number of plot samples representing homoge-
nous DP trees with strict criteria excluding the plots 
that have a sparse distribution of DP/plot, stressed 
DP, large level of heterogeneity, and not representing 
the age stage class. The plot design with 40m × 40m 
dimension ensured that the area on the ground occu-
pied at least one full pixel of Landsat 8 OLI image with 
a 30-m pixel resolution (Issa et al., 2019). Landsat 8 OLI 
spectral variables (mean values) for all the plots were 
extracted for a 3 × 3 window centered over each plot 
to reduce the uncertainties in RS data resulting from 
plot positioning errors that could be created because 
of the mismatching of sample plots with the image pix-
els introduced when the x and y coordinates of sample 
plots were located using GPS (D. Lu et al., 2002). 

The RS models for estimating DP biomass were 
estimated from Level 2 product of Landsat to identify 
and measure more accurate RS predictors, however, 
Landsat with moderate spatial resolution, was not able 
to differentiate and map DP at all age stages. There-
fore, we used accurate maps of DP at all age stages 
derived from fine-resolution WV-2 scenes as input to 
our final biomass models (Dahy et al., 2021). Hence, we 
succeeded in predicting and visualizing the amounts 
of CS in all DP trees in the whole study area.
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One of the key objectives of this 

study was to develop specific allo-

metric biomass equations for assessing carbon 

sequestration in DP of the UAE and to estimate 

the potential of DP species to improve soil car-

bon sequestration in such desert ecosystems 

(see Chapter 1). Allometric equations using 

structural variables that could be linked to RS 

observations were developed for DP at different 

age stages. Based on field and lab works, CA 

was found to best estimate CB and SOC, while 

Ht was the best estimator of TB. The allometric 

equations developed using these variables al-

lowed the estimation of CB, TB and SOC with co-

efficients of determination (R2) of 0.884, 0.835 

and 0.952, respectively (see Chapter 2). The al-

lometric equations developed in the early stag-

es of the dissertation were crucial for the devel-

opment of the RS-based model to predict AGB 

as they provided the needed input to calibrate 

the model without further recourse to destruc-

tive procedures for measuring AGB in the field. 

Furthermore, the dissertation showed that the 
average ratios of the BGB to AGB in DP varied with their 
maturity stages at values of 0.332 for young, 0.925 for 
medium (due to the substantial growth of the palm’s 
root system at this stage to support the emergence 
of the trunk) and 0.496 for mature DP. Additionally, the 
study showed that the amounts of CS in or contrib-
uted by DP were substantial, with significantly higher 
amounts of SOC compared to other local plants. 

The development of AGB and OC estimation 
equations using RS data enabled the calculation of CS 
over large areas without further need for extensive field 
work, a key tool to accomplish the other objectives of 
this book (see Chapter 3 and 4). RS data sets (Land-
sat-8 OLI and WV-2 imageries) were used for the ac-

curate delineation of DP trees at different age stages 
for the whole study area. The dissertation proposes a 
novel framework based on using multi-source/ mul-
ti-sensor data in a hierarchical integrated approach 
(HIA) to map DP trees in the Emirate of Abu Dhabi at 
different age stages (see Chapter 3). 

First, each pan-sharpened scene of Landsat-8 
OLI was classified using an HCM (supervised and un-
supervised classification) to create LULC maps. The 
evaluation of the spectral signatures separations was 
performed to select the best discriminatory Landsat-8 
OLI bands. Interpretation of the seven signatures 
demonstrated that the shortwave infrared (SWIR1& 
SWIR2) had the best separability power of all Land-
sat 8 OLI bands. However, some other combinations 
were found to be efficient in identifying and mapping 
the vegetation class such as (RED, SWIRE1, SWIRE2), 
(RED, GREEN, SWIR1), (RED, GREEN, SWIR2) or 
(GREEN, SWIR1, SWIR2). Next, the maps were reclas-
sified (recoded) to create a vegetation bitmap encom-
passing only two classes: vegetation and non-vegeta-
tion. The HCM was applied to the vegetation bitmap to 
delineate and map DP in the study area. However, at 
this stage of the classification, mature DP trees only 
were depicted due to the limitations of Landsat-8 OLI 
to separate soil background from the non-mature DP 
trees (≤ 10 years, with average crown diameter less 
than 5 meters). 

Therefore, the sub-meter WV-2 imagery, cov-
ering vegetated areas, were classified using the ob-
ject-oriented classification (OOC) method, to separate 
and map the other two DP age stages (medium, and 
young). At this level, about 829 sub-meter WV-2 imag-
es were classified and interpreted to extract and map 
all categories of DP in the study area. The suitability 
of the WV-2 satellite data for the identification of tree 
species was demonstrated. Furthermore, the OOC 
proved to outperform the pixel-based approach with 
the near-infrared, red-edge, and green bands being 
always more important than the other bands to clas-
sification. 
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The areas of DP trees at the various age stag-
es was calculated and were found to be 4,193.86 ha 
1,672.14 ha, and 1,722.05 ha for mature, medium, and 
young DP, respectively. The total DP trees areas rep-
resented around 65% of the total vegetated areas in 
Abu Dhabi (mostly located in the eastern and south-
ern parts of the emirate). This was expected due to the 
importance given to DP in the farming system of the 
emirate and the adopted government policies in grant-
ing farms to the local population. 

Furthermore, comparing the results of DP maps 
produced using Landsat-8 OLI and WV-2 imagery, 
showed a big difference between the two methods. 
This is because DP class areas estimated by the clas-
sified Landsat-8 images include the spacing areas 
(empty areas) among DP while the classified WV-2 
images completely excluded these empty areas con-
sidering them as part of the pure soil class. Note that 
the difference between Landsat and WV-2 results can 
be reduced if the OOC is tuned to segment the whole 
farm rather than patches of DP.

The results of the classified maps accuracy as-
sessment indicated a good overall performance of the 
classification process with an overall accuracy value of 
about 81.7% for the LULC map and 87% for the vege-
tation bit-map using Landsat-8 OLI as source data. For 
DP age stages maps using WV-2 data, the overall ac-
curacies were 86.8%, 88% to 90.7% for young, medi-
um, and mature DP, respectively. Besides, the accuracy 
of the DP map considering all DP ages had an overall 
accuracy of 94.5% and a kappa coefficient of 88%.

Furthermore, it was observed that mature DP 
showed better overall classification accuracy followed 
by medium DP and young DP, respectively. This could 
be attributed to the less background contribution in 
the overall reflectance of the pixel because of large 
crown area coverage of mature DP; while medium and 
younger (smaller canopy cover) result in wider spacing 
and higher exposure of the soil background resulting 
in a mixed spectral signature.

 Finally, a marginal improvement in classification 
was achieved through manual editing in a GIS.  A fi-
nal and accurate DP map at three age stages in the 
emirate of Abu Dhabi (mature, medium, and young) 
was created.  Most of the DP trees in Abu Dhabi were 
found to be in Al Ain (east of the emirate) and Liwa 
(south of the emirate) with more than half of those at 
the mature stage (> 10 years). The produced DP map 
was converted to a GIS layer and used as an input to a 
RS-based biomass model to assess CS in DP trees in 
the study area (see Chapter 4).

A geospatial model of carbon stock assessment 
of date palm at different age stages was developed. 
Allometric equations, previously developed and pub-
lished by the authors, were utilized to design, calibrate, 
and implement the model to predict the amounts of 
AGB and AGC in DP. Different types of regression anal-
ysis (single and multiple) were tested to create rela-
tionships linking the AGB to RS predictors. Using an 
expanded number of 54 field plots showed that TCW 
has the most significant correlation estimated using 
a second-order polynomial model to estimate the bi-
omass of MDP with R² equal to 0.7643 and P-value 
equal to 0.007. 

On the other hand, the exponential regression 
model that used RDVI as RS predictor provided the 
strongest correlation with AGB of Non-MDP, with an 
R2 value of 0.4987 and a P-value of 0.00002. The 
development of a remote sensing-based biomass 
and carbon estimation model enabled the prediction 
and visualization of CS over extended areas with min-
imum fieldwork.  Using previously produced DP age 
classification maps, the RS-based model was applied 
to Landsat-8 imagery to map and predict the CS of 
DP in Abu Dhabi. The total CS in DP trees was 
estimated as the sum of the estimated CS in 
the five components: AGB, BGB, litter, debris, 
and SOC. The overall CS by DP trees in Abu 
Dhabi predicted from this map amounted to 
2,447,856.87 tons. 
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The main limitation is related to the use of mod-
erate spatial resolution RS product to estimate the bio-
mass and CS amounts. Landsat with moderate spatial 
resolution was not able to accurately differentiate and 
map DP at all age stages. Therefore, we used accurate 
maps of DP at all age stages derived from fine-resolu-
tion WV-2 scenes as input to our final biomass models. 

Consequently, a weak statistical relationship 
between AGB of medium and young DP with RS var-
iables derived from Landsat-8 OLI was observed. 
Subsequently, young, and medium DP classes were 
merged to form one non-mature DP (Non-MDP) class. 
To overcome this challenge one suggested solution is 
to use finer spatial resolution of satellite imagery for 
the building the DP biomass model. 

The implemented approach proved very prom-
ising, with minimal cost compared to more complex 
algorithms and data, especially for limited-budget re-
searches, which is the case in most developing coun-
tries. The approach was successful in identifying and 
mapping mature, medium, and young DP in the study 
area with high accuracies. The accurate mapping of 
three age stages permitted for a better estimation of 
their CS. The created maps opened the road toward 
applying a non-destructive approach and to build a 
RS-based biomass estimation model for assessing 
AGB and CS in DP in the arid environment of UAE (see 
Chapter 4). Moreover, the approach can easily be ex-
tended to larger areas in the region.

RS-based biomass assessment models for 
DP were built for quick and reliable estimation of the 
amounts of AGB and CS which allow for the establish-
ment of a benchmark DP CS map for the Emirate of 
Abu Dhabi. The methodology proposed in this book re-
lied on both fieldwork and analysis of RS data. The work 
procedures included pre-field preparations to identify 
sample areas of interest, fieldwork that included sam-
ple collection and measurement of plant characteris-
tics, and post-field activity that focused on processing 
RS data and model development and validation. 

Our applied methods used in this project can be 
generalized to other areas in the Gulf region with min-
imal cost. It can also be modified to use other publicly 
available moderate resolution imagery such as Sen-
tinel-2. RS-based biomass estimating model for DP 
were built for a quick and reliable method for the crea-
tion and visualization of a standard DP CS map for the 
Emirate of Abu Dhabi. Thus, it can be further employed 
to boost the decision-taking process on durable and 
sustainable management of CS in other similar eco-
systems.

In conclusion, the field-based measurements 
and geospatial approach introduced in this study has 
the potential to help improve carbon estimation in DP 
trees to reduce emissions resulting from deforestation 
and forest degradation (REDD+) and to design incen-
tive programs in the UAE.
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Appendices



Appendix 1: Different field variables used in allometric equations to estimate palm biomass,                                                                          
mostly oil palm (Elaeis guineensis). 

Source Output Allometric Equations Field Variables

(Saldarriaga et al., 1988) AGB = 1.697 × 10−3 × DBH1.754 × H2.151 DBH and H

(Brown, 1997) Biomass =10.0 + 6.4 × H
= 4.5 + 7.7 × Ht

H and Ht

(H. Khalid et al., 1999a) AGB H

(Hughes et al., 1999) AGB = 0.3060 × DBH1.837 × 1.035 DBH

(Henson & Chang, 2003) Biomass = -0.00020823Age4 + 0.000153744Age3 – 
0.011636Age2 + 7.3219Age – 6.3934

Age

(Thenkabail et al., 2004) AGBfresh
AGBdry

 Ht

(R. Hereward V. Corley & 
Tinker, 2008)

Trunk biomass
Frond biomass

= 0.1 x TD x H x (DBH/2)2

 
H, TD, DBH, W, D, 
and Age

(Dewi et al., 2009) AGB H

(Goodman et al., 2013) AGB = 13.59 x H − 108.8 H

(Goodman et al., 2013) AGB = 0.0950 x (DF x DBH2 x H) DF, DBH, and H

(Da Silva et al., 2015) AGB = 0.167 × (DBH2 x H x TD)0.883 DBH, H, and TD

(Prayogo et al., 2018) AGB = 0.03883 x H x DBH1.2 DBH and H

(Zahabu et al., 2018) AGB = 3.7964 x H1.8130 H

Where DBH is diameter breast height, H is palm height, Ht is trunk height, TD is trunk density, W is frond width, D is 
frond depth, and DF is dry to fresh weight ratio.
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Appendix 2: A summary of limitations and benefits of Optical, RADAR, and LiDAR sensors used for esti-
mating the Above Ground Biomass (AGB) of standing forests.

Sensor Types Approaches/ Resolutions Limitations Benefits

Optical 
Sensors

Coarse Resolution Spatial 
(>100 m)

Examples: MODIS, AVHRR, 
NOAA, METEOSAT and SPOT 
Vegetation

- Average R value of 0.58, with average 
predictive of 42% 
- Saturation of spectral data at high bio-
mass density
- Mismatch between the size of field plots, 
field measurements and pixel size (mixed 
pixels)
- Cloud cover
- Limited to discriminating vegetation 
structure

- Availability of data with huge 
datasets archived 
- Estimation and mapping of 
AGB at continental and global 
scale
-Repetitive, with high temporal 
frequency increasing the proba-
bility of acquiring cloud-free data
- Provide consistent spatial data 

Medium Spatial Resolution 
(10-100 m) 

Examples: TM Landsat, 
ETM+, OLI and SPOT

- Average R value of 0.68 with average pre-
dictive error of 32% 
- Single pixel can encompass many tree 
crown or non-crown features
- No reliable indicators of biomass in clo-
sed canopy structure 
- Not all texture measures can effectively 
extract biomass information 

-Provide consistent global data
- Archived datasets back to 1972 
for Landsat
- Small to large-scale mapping 
- Cost-effective (Free)

Fine Spatial Resolution
(<5 m)

Examples: Quickbird, World-
View-2, and IKONOS

- Need large data storage and processing 
time
- High cost, and more costly when it ap-
plies on large areas 
 

- Average R value of 0.75 and 
average predictive error (27%) 
- Estimate tree crown size
-Validation at localized scale

Hyperspectral 
Many, very narrow, and conti-
guous spectral bands
 
Examples: AISA Eagle, HYDI-
CE and ALOS

-Cloud cover
-High cost
-Suffer from band redundancy and satura-
tion in dense canopy
-Computationally intensive and technically 
demanding 

-Average R value of 0.83
-Allows discrimination of subtler 
differences (species level)
-Potential for the future of RS-ba-
sed biomass estimation models 
-Integration with LiDAR can im-
prove results.
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Appendix 2: A summary of limitations and benefits of Optical, RADAR, and LiDAR sensors used for esti-
mating the Above Ground Biomass (AGB) of standing forests. Continued.

Sensor 
Types

Approaches/ 
Resolutions

Limitations Benefits

RADAR 
Sensors

Approaches invol-
ve the use of either 
backscatter values or 
interferometry techni-
ques

Examples: 
Microwave/radar i.e., 
ALOS PALSAR, ERS-1, 
Envisat and JERS-1.

-Not accurate in mountainous region 
due to spurious relation between AGB 
and backscatter values.
-Signal saturation in mature forests at 
various wavelengths (C, L and P bands)
-Polarization (e.g., HV and VV) problems
-Low spatial resolution makes it inaccu-
rate for AGB assessment at the species 
level.
-Cannot be applied on any vegetation 
type without considering stand charac-
teristics and ground conditions.

-Measure forest vertical structure
-Generally free 
-Can be accurate for young and sparse fo-
rests
-Repetitive data
Can give an average R value of 0.74, with 
average predictive error of 25%.
Integrating RADAR with multi source data 
(optical, microwave data and GIS modeling 
techniques) is a promising approach.

LiDAR 
Sensors

Using laser light 
Spatial Resolution: 
(0.5 cm – 5 m)

Examples: Carbon 
3-D

- Repetitive at high cost and logistics 
deployment
-Requires extensive field data calibrati-
on
-Highly expensive
-Technically demanding

-Penetrate cloud cover and canopy
-Among all sensors option, LiDAR is the 
easiest to use for the extraction of tree at-
tributes for estimating AGB with great ac-
curacy
-Accurate for estimating forest biomass in 
all spatial variability (sparse, young or ma-
ture forests)
- Average R value of 0.89, with average pre-
dictive error equal 14%
-Potential for satellite-based system to es-
timate global forest carbon stock
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Appendix 3: Specifications of the RS optical sensors most commonly used for AGB estimation.

Sensor Type Bands
Spatial 

Resolution 
Temporal 

Resolution 
Swath Cost

AVHRR
Multispectral 5 bands (Red, IR, and 3 Ther-

mal IR)
1,100 meters 12 hours 2,500 km Free

MODIS
Multispectral 36 bands (from Blue to Ther-

mal IR)
250, 500 and 
1,000 meters

1-2 days 2,330 km Free

SPOT VEG
Multispectral 4 bands (Blue, red, NIR, and 

SWIR)
1,000 meters 1 day 2,250 km Free

TM
Multispectral 7 bands (3 VIS, 3 IR and Ther-

mal IR)
30 and 120 me-
ters

16 days 185 km Free

ETM+
Multispectral 9 bands (3 VIS, 3 IR and 2 Ther-

mal IR and 1 PAN)
15, 30 and 60 
meters

16 days 185 km Free

SPOT
Multispectral 4 bands (2 VIS, 1 NIR, and 1 

PAN)
5, 10 and 20 
meters

26 days 60 km Commercial

Landsat 8 
OLI

Multispectral 11 bands (1 Ultra, 3 VIS, 3 IR, 1 
Cirrus, 2 Thermal IR, and 1 PAN)

15, 30 and 100 
meters

16 days 185 km Free

LISS-III 
(IRS)

Multispectral 5 bands (2 VIS, 2 IR, and 1 PAN) 5.3, 23 and 50 
meters

5-24 days 142 km Commercial

Sentinel-2
Multispectral 13 bands (4 VIS, 6 NIR and 3 

SWIR)
10, 20, and 60 
meters

5-10 days 290 km Free

IKONOS Multispectral 5 bands (3 VIS, 1 IR, and 1 PAN) 1 and 4 meters 3 days 11 km Commercial

World 
View2

Multispectral 9 bands (6 VIS, 2 IR, 1 PAN) 1.84 and 0.46 
meter

1.1 days 16 km Commercial

Quickbird
Multispectral 5 bands (4 bands and 1 PAN) 0.61 and 2.44 

meter
3 days 16 km Commercial

HyMap
Hyperspectral 126 bands 2-10 meters Airborne 2.3 km and 

4.6 km
Commercial

AVIRIS
Hyperspectral 224 bands (from VIS to MIR) 2.5 to 20 me-

ters
Airborne 1.9 km and 

11 km
Not Commer-
cial
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Appendix 4: Different cultivars and age stages from three different farms of the study area are selected to 
run the destructive method and to build the allometric equations.

No. Palm Cultivar Destruction Date Location Age (year)

1 LuLu 24-Apr-18 Masakin 2.5

2 Khalas 24-Apr-18 Masakin 2.5

3 Fardh 24-Apr-18 Masakin 3

4 Bumaan 24-Apr-18 Masakin 3

5 Khunaizi 24-Apr-18 Masakin 4

6 Khalas 29-Apr-18 Salamat W. 5

7 Fahel (Male) 29-Apr-18 Salamat W. 7

8 Khunaizi 29-Apr-18 Salamat W. 8

9 Fardh 29-Apr-18 Salamat W. 9

10 Bumaan 29-Apr-18 Salamat W. 10

11 Baghel 25-Apr-18 Qattara 11

12 Jabri 25-Apr-18 Qattara 14

13 Shahem 25-Apr-18 Qattara 16

14 Jash Ramli 25-Apr-18 Qattara 18

15 Neghal 25-Apr-18 Qattara 20

Appendix 5: The average amounts of date palm biomass, organic matter, organic carbon, and soil organic 
carbon at different age stages.

Item

Average amount (Kg palm-1)

Young 
(< 5 year)

Medium
(5 – 10 years)

Mature 
(>10 years)

Crown Biomass (CB) 22.51 65.17 148.5

Trunk Biomass (TB) 0 29.53 135.91

AGB 22.51 94.69 284.41

BGB 7.46 87.61 141.23

Total Biomass 29.97 182.3 425.63

Organic Matter (OM) 27.39 166.56 388.94

Organic Carbon (OC) 15.88 96.62 225.58

SOC 18.09 62.59 92.91

Total Carbon Stock (CS) 33.97 159.21 318.49
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Appendix 6A: Details of the Landsat-8 OLI Level-2 used (6 scenes)

No. Scene (Path/
Row)

Date (2017) Bands Used (µm) Resolution/ Swath

1 160/43 24th April Band1 (coastal): 0.433–0.453, 
Band2 (blue): 0.450–0.515, 
Band3 (green): 0.525–0.600,
Band4 (red): 0.630–0.680, 
Band5 (NIR): 0.845–0.885, 
Band6 (SWIR 1): 1.560–1.660,
Band7 (SWIR 2): 2.100–2.300, and 
Panchromatic: 0.500–0.680

30 meters for multispectral bands 
and 15 meters for panchromatic.
Swath area is 185 km.

2 160/44 26th May

3 161/43 15th April

4 161/44 15th April

5 162/43 22nd April

6 162/44 22nd April

Appendix 6B: Details of the WorldView-2 used (829 scenes)

No. Band Width (µm) Resolution/ Swath

1 Band 3 (Green) 0.510 – 0.580 1.85 meters for multispectral bands and 0.50 meters for panchromatic. 
The swath of each scene is 16 kilometers.

2 Band 5 (Red) 0.630 – 0.690

3 Band 7 (NIR 1) 0.770 – 0.895

4 Panchromatic 0.450 – 0.800

Appendix 7: Geographic and environmental settings of the study area

Elevation  0 – 200 m

Geomorphology sand dunes, inter-dunal sands, coastal and inland sabkhas and exposed rocks.

Climate The Köppen Climate subtype is "BWh" (Tropical/Subtropical Desert Climate)

Seasons two seasons: summer (April - Sept) and winter (Oct - Mar).

Temperature from 35° to 45 C in summer and from 10 to 24°C in winter.

Relative humidity high in the coasts (reach 90%) and extremely dry in western and southern deserts.

Rainfall variable among years. Occurs in winter and reaches 12 cm annually

Groundwater low with large amount of salinity levels

Soils sandy, sandy calcareous, gypsiferous, saline, salinegypsiferous and hard pan soils

Vegetation ~ 60% are annuals species and germinate from Feb to April, generally and the perennial species 
flower from Jan to early May, and some in Sept and Nov.
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The main Land cover classes of the Emirate of Abu Dhabi

Infographic 12: Land use and land cover map of the Emirate of Abu Dhabi
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Appendix 8: Linear correlation between RS variables and AGB of date palm (mature, medium, and young). 
Here, 54 field plots were used covering the whole study area of Abu Dhabi (see Chapter 4).

Age Class RS Variable Constant Coefficient R2 P value

Mature

Single Bands

B1 85.270 -0.047 0.113 0.187
B 93.557 -0.043 0.143 0.135
G 107.820 -0.036 0.187 0.083
R 103.466 -0.029 0.230 0.052
NIR 149.462 -0.026 0.086 0.255
SWIR1 115.464 -0.021 0.302 0.022
SWIR2 102.826 -0.023 0.290 0.026

VI's

SR -32.033 37.696 0.545 0.0007
RVI 131.267 -164.234 0.315 0.019
DVI -98.847 0.084 0.412 0.006
NDGI 100.560 636.247 0.609 0.0002
NDVI -17.970 194.545 0.398 0.007
TVI -476.939 454.517 0.379 0.009
GNDVI -53.452 249.782 0.311 0.020
RDVI -47.289 3.911 0.418 0.005
SAVI -18.985 131.919 0.413 0.005
MSAVI -38.643 175.245 0.337 0.013
TCB 123.051 -0.013 0.227 0.053
TCG 0.146 0.060 0.313 0.20
TCW 84.780 0.037 0.396 0.007

Medium
 

Single Bands

B1 28.817 -0.007 0.027 0.504

B 29.653 -0.006 0.026 0.507

G 31.553 -0.004 0.030 0.479

R 33.809 -0.005 0.057 0.327

NIR 24.178 -0.0002 0.0001 0.966

SWIR1 37.538 -0.004 0.075 0.256

SWIR2 35.052 -0.004 0.074 0.260

VI's

SR -7.827 17.892 0.195 0.058

RVI 53.020 -50.018 0.159 0.091

DVI -3.322 0.018 0.208 0.049

NDGI 36.484 108.230 0.128 0.132

NDVI 6.605 64.310 0.164 0.085

TVI -125.108 132.281 0.131 0.128

GNDVI 1.429 59.096 0.081 0.239

RDVI 0.224 1.191 0.205 0.052

SAVI 6.695 42.842 0.159 0.091

MSAVI 3.003 50.018 0.159 0.091

TCB 34.810 -0.002 0.041 0.407

TCG 15.280 0.015 0.164 0.085
TCW 34.943 0.008 0.125 0.137
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Young

Single Bands

B1 1.126 0.005 0.172 0.087

B 1.137 0.004 0.159 0.101

G 0.260 0.003 0.157 0.103

R -0.217 0.002 0.154 0.107

NIR -7.186 0.003 0.283 0.023

SWIR1 -1.031 0.002 0.105 0.190

SWIR2 0.620 0.002 0.079 0.258

VI's

SR 8.420 -1.581 0.006 0.753

RVI 3.403 3.907 0.008 0.723

DVI 3.091 0.003 0.044 0.404

NDGI 9.509 23.810 0.036 0.451

NDVI 7.367 -6.913 0.012 0.661

TVI 18.283 -11.195 0.007 0.738

GNDVI 9.674 -11.393 0.031 0.485

RDVI 5.550 0.042 0.002 0.855

SAVI 6.978 -3.095 0.006 0.767

MSAVI 7.310 -3.907 0.008 0.723

TCB -2.488 0.001 0.174 0.085

TCG 6.290 -0.001 0.004 0.802

TCW 5.885 -0.0001 0.0002 0.951

Appendix 8: Linear correlation between RS variables and AGB ( Continued ).
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Abbreviations



AGB Aboveground Biomass
AGC Aboveground Carbon
AOAD Arab Organization for Agricultural 

Development
APAR Absorbed Photosynthetically Active 

Radiation
BGB Belowground Biomass
BGC Belowground Carbon
CA Crown Area
CB Crown Biomass
CD Crown Diameter
CS Carbon Stock
DBH Diameter at Breast Height
DF Dry to Fresh Factor (biomass)
DP Date Palm
DTM Digital Terrain Model
DVI Difference Vegetation Index
ETM+ Enhanced Thematic Mapper (landsat-7)
EVI Enhanced Vegetation Index
FAO Food and Agriculture Organization of the 

United Nations
FMT Feature Model Tree
FOTO Fourier Transform Texture of Ordination
#Frond Number of Palm Fronds
GEMI Global Environmental Monitoring Index
GHGs Greenhouse Gases
GIS Geographic Information Systems
GPS Global Positioning System
H Palm Height
Δheight Crown Depth
HIA Hierarchical Integrated Approach
HCM Hybrid Classification Method
Ht Palm Trunk Height
IPCC Intergovernmental Panel on Climate 

Change 
IR Infrared
LAI Leaf Area Index
LiDAR Radar and Light Detection and Ranging
LULC Land Use/ Land Cover
MDP
MeDP

Mature Date Palm

Medium Date Palm
MSAVI Modified Soil-Adjusted Vegetation Index 

NDFI Normalized Difference Fraction Index 
NDGI Normalized Difference Greeness Index 
NDVI Normalized Difference Vegetation Index
NN Nearest Neighborhood
OBC Object-Based Classification
OC Organic Carbon
OLI Operational Land Imager (landsat-8)
OM Organic Matter
OOC Object -Oriented Based Classification
PBC Pixel- Based Classification
R Coefficient of Correlation
R2 Coefficient of Determination
REDD+ Reducing Emissions from Deforestation 

and Forest Degradation

RMSE Root Mean Square Error
RS Remote Sensing
RVI Ratio Vegetation Index
SAVI Soil Adjusted Vegetation Index
SE Standard Error
SOC Soil Organic Carbon
SOM Soil Organic Matter
SR Simple Ratio 
SWIR Shortwave Infrared
TB Trunk Biomass
TCB Tasseled Cap Index of Brightness
TCG Tasseled Cap Index of Greenness
TCW Tasseled Cap Index of Wetness
TM Thematic Mapper (landsat-5)
TSAVI Transformed Soil-Adjusted Vegetation 

Index
UAE United Arab Emirates
UN United Nations
UTM Universal Transverse Mercator
VIs Vegetation Indices
VOB/ha Volume of the Biomass Per Hectare
WV-2
YDP

World View 2

Young Date Palm
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