## **Salinity stress in date palm** *(Phoenix dactylifera* L.): tolerance, mechanisms & mitigation

Horticulture, Environment, and Biotechnology

Khalid M. Al-Absi

**Prof. of fruit trees physiology**. Dept. of plant production, Faculty of Agriculture, Mutah University



#### Introduction

- Effect of salinity of different ionic compositions
- Salt tolerance
- Osmotic effect versus specific ion effect
- Mechanism of salt tolerance
- Varietal response to salinity
- Maas–Hoffman model
- Salinity threshold of some date palm cultivars
- Analysis of salt stress response



#### Water relations

- Gas exchange
- Biochemical constituents
- Oxidative stress
- Hormone regulation
- Mitigation of salt stress
- Mechanism of salt tolerance
- Conclusion

## **Introduction**

- **Salinization** of soil and irrigation water is becoming an increasingly serious constraint for the cultivation of fruit crops, especially in arid and semiarid areas.
- □ Water scarcity: pushes decision-makers to adopt water supplies from nonconventional sources: saline water & wastewater.
- Use of saline water is one of the alternative sources of irrigation water in Jordan and other Mediterranean countries.

#### Principal criteria of water suitability for irrigation:

- Sodicity
- Salinity
- Alkalinity
- Specific ion toxicity.

### • Effect of salinity of different ionic compositions on

- date palm growth and tolerance is based on:
- Type of salt stress
- Stage of growth and development
- Osmotic effect
- Specific ion toxicityNutritional imbalance.







### **Classes of irrigation water quality**

| Class | Ecw (dS/m) | Salinity Level |
|-------|------------|----------------|
| 1     | 0 - 0.28   | Low            |
| 2     | 0.28 - 0.8 | Medium         |
| 3     | 0.8 - 2.3  | High           |
| 4     | 2.3 - 5.5  | Very High      |
| 5     | >5.5       | Extremely High |

- **Date palm** is classified as a relatively tolerant tree crop
- The extent of tolerance mechanisms in date palm is strongly cultivar-specific.
- The cyclic use of saline water and good quality water and avoidance of irrigating trees with high saline water at sensitive stages of growth are good and safer strategies to reduce the negative impact of salt stress.

In the last twenty years, dates plantations extended in Jordan.

- More expansion is expected in the coming years.
- > Most date palm plantations depend on the underground water which is characterized by its high content of Na, Ca, Mg, Cl, SO<sub>4</sub>, CO<sub>3</sub><sup>2-</sup> and HCO<sub>3</sub>, that are concentrated, as H2O evaporates, and build up in the soil. In these areas, salinity stress is increased dramatically.

### Classification of date palm salt tolerance listed by Maas and Hoffman

- only a qualitative evaluation for trees and it was unable to determine the precise salinity threshold and slope.
- Much majority of the investigation quantifying the salinity resistance of date palm has been based on *in vitro* or greenhouse studies and conducted by treating the plants with a saline solution using a single salt, usually NaCl, as the salinizing agent, which does not reflect the composition of ordinary irrigation water

### **Osmotic effect versus specific ion effect**

 $\succ$  The soil solution and irrigation water contain Ca, Mg, Na; Cl, SO4, CO<sub>3</sub><sup>2-</sup> & HCO3-.

>The varied ionic composition strongly affected date palm growth & development

### Influence of salinity on dates

- ➢Osmotic potential of soil & irrigation water
- Specific toxicity: more suppressive than osmotic stress
- ➢Cl, and Na are more toxic than SO4 and Ca.
- ➢V. little information has been published about specific ion toxicity on palm date
- ➢The extent of salinity stress on date palm varied according to nature of salt used.
  CaCl₂ caused the lowest reduction followed by KCl then NaCl.
- Tolerant cvs can restrict the uptake and accumulation of Na and Cl in leaf tissue.
   Nutritional imbalance

### **Mechanism of salt tolerance**

- Till date, no sufficient information available mechanism of salinity tolerance in date palm. <a>▶<u>Osmoregulation</u></a>
- ➢ Ion transport and uptake
- Shoot Na exclusion
- ≻-Maintaining a high K/Na ratio in the activity growing tissues.
- > The mechanism, preventing ions absorption and transport to higher part of the crop.
- >- Increase in K/Na ratio is used as good criteria for salt tolerance in *Phoenix dactylifera*
- Ion homeostasis
- ➢Activation of antioxidant molecules and enzymes.
- Morphological, physiological and biochemical influences: increases in root/canopy ratio & chlorophyll content in addition to changes in leaf anatomy.
- Xeromorphic leaf properties & minimized stomatal apertures contributed to tolerance

# **Maas–Hoffman model**

معادلة ماس وهوفمان

# $100 - b(EC_e - a)$

#### • Where

- *a* = the salinity threshold expressed in dS/m;
- *b* = the slope expressed in percent per dS/m;
- $EC_e = EC$  of a saturated paste taken from the rootzone.
- Date palm is classified as a <u>relatively tolerant</u> tree crop

#### Salinity threshold

- The tolerance is described by plotting relative growth or productivity as a function of soil salinity (Maas and Hoffman).
- This response curve could be represented on the basis of two parameters:
- a. Salinity threshold (ECt): max. soil salinity without yield reduction
- b. Slope (s): fractional yield decline per unit increase in salinity beyond the threshold.
- According to Maas and Grattan (1999) and FAO: date palm tree is considered as salt-tolerant tree with a threshold of 4 dS/m and slope of 3.6 based on fruit yield.
- Maas and Hoffman response doesn't take into account stage of growth, soil type, duration of osmotic duration, ionic composition of salts, moisture level and environmental conditions prevailing during the salt stress.



*Figure 1.* Division for classifying crop tolerance to salinity (Maas and Hoffman, 1977).

### Salinity threshold of some date palm cultivars



# Varietal response to salinity

Table 1: Classification of various date palm cultivars according to their salt-tolerance.

| Resistance     | Cultivar                                             | Country                      | Parameter used to determine             | Source                                     |
|----------------|------------------------------------------------------|------------------------------|-----------------------------------------|--------------------------------------------|
| classification |                                                      |                              | threshold                               |                                            |
| Sensitive      | Nabusaif                                             | Kuwait                       | Survival % & growth rate                | Al-Mulla et al., 2013                      |
|                | Abunarenia, Nashukharma<br>Barni, HilaliQmani, Zabad | Oman                         | Dry wt. shoots & roots                  | Al <u>Khanusi</u> et al., 2017             |
|                | Mesalli. Bazez                                       | UAE                          | Plant height, girth & Leaves no. le     | Kurup et al., 2009                         |
|                | Rati                                                 | India                        | Seed germination                        | Ramoliza and Pandey, 2003                  |
|                | Barhi.                                               | Saudi Arabia<br>Saudi Arabia | Callus diameter<br>Leaf growth          | Aldhehiani et al., 2018<br>Abdulhadi, 2001 |
|                | Lulu                                                 | UAE                          | Seedling leaf number                    | Aljuburi, 1992                             |
|                | Mabroom.                                             | Saudi Arabia                 | Germination% & shoot length             | Al-Qurainy, et al., 2020                   |
|                | Madiel                                               | Saudi Arabia                 | Leaf growth                             | Abdulhadi, 2001                            |
|                | Hayany                                               | Egypt                        | Leaf area, no. branches & yield         | Khawaja, 2013                              |
| Moderately     | Eard, Nagal                                          | Oman                         | Dry weight of shoots & roots            | Al <u>Kharusi</u> et al., 2017             |
| tolerant       | Khunaizy. Abunarenjeh                                | Oman.                        | Seedling height & girth                 | Alrashi et al., 2010                       |
|                | Khalas                                               | Saudi Arabia                 | Callus diameter                         | Aldhebiani et al., 2018                    |
|                | <u>Khainazi</u>                                      | Saudi Arabia                 | Stem & root length                      | Alturki, 2018                              |
|                | Kasah Barhee                                         | Kuwait                       | Survival % & growth rate                | Al-Mulla et al., 2013                      |
|                | Aine                                                 | Saudi Arabia                 | Germination% & shoot length             | Al-Qurainy, et al., 2020                   |
|                | Zazhloul                                             | Egypt                        | Leaf area, no. branches & yield         | Khawaja, 2013                              |
| Tolerant       | Bugal White, Khashkar                                | UAE                          | Plant height, collar girth & leaves no. | Kunup et al., 2009                         |
|                | Manoma, Umsila                                       | Saudi Arabia                 | Shoot & root dry wt.                    | Al <u>Khanusi</u> et al., 2017             |
|                | Bartomouda                                           | Egypt                        | Plant height and dry weight of leaves   | El-Sharabaax, 2008                         |
|                | Server.                                              | Egypt                        | Leaf area, no. branches & yield         | Khawaja, 2013                              |

### Analysis of salt stress response in date palm

- Growth
- Salinity influences all aspects of development including: germination, vegetative growth and reproductive development.
- The growth response of date palm to salt stress depends on variety, growth stage, environmental factors, and nature of the salts.
- Seed germination is the most critical stages in the life cycle of date palm.
- Salt-tolerant cvs of date palm displayed a higher root/shoot growth and a higher growth compared to salt-sensitive cvs
- Limited growth is associated with:
- decrease in gas exchange, including stomatal closure and the inhibition of mesophyll conductance to CO<sub>2</sub> diffusion



### **Water relations**

- Under salt stress: Rapid changes in RWC, water retention & leaf  $\Psi_w$ .
- $\succ$ Salt stress disturbs the tree's water relations due to decreased availability of water from soil solution as a result of lowered  $\Psi$ s.
- RWC was considered a contributing factor in stress sensitivity of date palm cvs.
- Reduced RWC retards tree growth under salt stress: dependent on salt type, genotype and exposure duration.
- RWC is higher in tolerant date palm cvs in comparison with susceptible ones

### Leaf gas exchange of date palm

- Osmotic and/or specific toxicity of Na & Cl
- 1. reduced Photosynthesis.
- 2. affected stomatal aperture: ABA enhances stomatal closure to conserve water
- 3. Morphological changes
- 4. CO<sub>2</sub> assimilation rate
- 5. transpiration
- 6. stomatal conductance
- ABA accumulation mitigate the inhibitory effect of salinity on photosynthesis & translocation of assimilates.

### **Fig:** % reduction in CO<sub>2</sub> assimilation rate of date palm genotypes

| Cultivar    | Salinity level        | Assimilation reduction | Reference                  |
|-------------|-----------------------|------------------------|----------------------------|
|             | (dS m <sup>-1</sup> ) | (%)                    |                            |
| Abunarenia  | 24                    | 56.3                   | Al Khanusi et al., 2017    |
| Bami        | 24                    | 60.7                   | Al Kharusi et al., 2017    |
| Farad       | 24                    | 55.1                   | Al Kharusi et al., 2017    |
| HilaliOmani | 24                    | 60.0                   | Al Kharusi et al., 2017    |
| Khalas      | 24                    | 59.3                   | Al Kharusi et al., 2017    |
| Manoma      | 24                    | 38.7                   | Al Kharusi et al., 2017    |
| Nagal       | 24                    | 55.6                   | Al Kharusi et al., 2017    |
| Nashukharma | 24                    | 60.7                   | Al Kharusi et al., 2017    |
| Umsila      | 24                    | 45.5                   | Al Kharusi et al., 2017    |
|             | 20                    | 33.3                   | Al Kharusi et al., 2019    |
| Zabad       | 24                    | 69.6                   | Al Kharusi et al., 2017    |
|             | 20                    | 51.8                   | Al Kharusi et al., 2019    |
| Lulu        | 30                    | 12.2                   | Youssef & Awad, 2008       |
| Madiool     | 20                    | 31.3                   | Al-Abdoulhadi et al., 2012 |
| Barhi       | 20                    | 39.6                   | Al-Abdoulhadi et al., 2012 |
| Khalas      | 20                    | 26.5                   | Al-Abdoulhadi et al., 2012 |

### **Biochemical constituents**

- Osmoregulation is a common adaptive response to salinity and ion toxicity.
- Stressed date palms accumulate osmotically active compounds: sugars, mannitol, glycine betaine and proline.
- A dramatic accumulation of leaf proline content in date palm upon exposure to osmotic stress .
- The main role of these compounds in stress is mitigation involves scavenging of ROS, osmoprotection, and carbon storage.
- Proline is the most prevalent a.a and org. solute accumulated at osmotic stress.
- Proline is used as a biochemical marker in selection date palm tolerant to salt stress.
- •

## **Oxidative stress**

- Under normal conditions, plant cells produce ROS in peroxisomes, mitochondria, and the cytoplasm either in a radical or non-radical form.
- Salinity stimulate oxidative stress which induces production of ROS, such as hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), hydroxyl-radical (OH<sup>-</sup>), superoxide-radical (O<sup>-</sup><sub>2</sub>), and singlet-oxygen (<sup>1</sup>O<sub>2</sub>) to regulate ROS homeostasis.
- ROS have an injurious effect on cell organelles and tissues.
- ROS leads to oxidative damage to the proteins, nucleic acids, degradation of membrane lipids through peroxidation; leading to electrolyte leakage.
- Date palm develop complex defense mechanism involving enzymatic antioxidants (catalase (CAT), glutathione (GSH), superoxide dismutase (SOD), ascorbate peroxidase (APX) and guaiacol peroxidase (GPX)) & non-enzymatic antioxidants (ascorbate, carotenoids, flavonoids and other phenolics) to mitigate the deleterious effects of oxidative damage.
- Non-enzymatic and enzymatic components scavenge or detoxify excessive ROS

# **Hormone regulation**

- <u>ABA</u> alleviates the adverse influence of salinity stress.
- SA is an important signal molecule for mitigating dates trees response to salinity .
- Growing date palm in saline environments reduces promoter's (IAA, GA<sub>3</sub> and Zeatin) & increases inhibitors (mainly ABA), and in turn led to inhibition of growth and development.

# **Mitigation of salt stress in dates**

- ➢Agronomic practices : mulching, balanced nutrition, deep plowing and application of green manure.
- Exogenous application of yeast and amino acids
- ➢arbuscular mycorrhizal fungi & compost separately or in combination
- Supplemental Ca<sup>2+</sup> by competing with Na for membrane-binding sites and maintaining high ratio of K/Na and regulating levels of IAA to ABA
- Application of humic acid
- ► Elemental Sulphur
- Actinomycetes
- ➤Citric acid



- Date palm evolved regulatory mechanisms to adapt salt stress.
- Understanding mechanisms of salt stress tolerance in date palm is necessary to optimize WUE.
- Cultivation of salt-tolerant cvs is the most effective way to overcome salinity.
- Develop. salt-tolerant genotypes is a promising solution.
- Molecular mechanism of salt adaptation remains to be elucidated.
- Further investigation is required to identify integration of morphological, physiological & molecular approaches for salinity tolerance among date palm genotypes.